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The Verilog Hardware Description
Language

Professor Don Thomas
Carnegie Mellon University (CMU)

thomas@ece.cmu.edu
http://www.ece.cmu.edu/~thomas

n This is not one cohesive presentation on Verilog. The slides
contained here are collected from different  CMU classes at
various academic levels.

n These slides are provided as an alternate aid to learning the
language. You may find them helpful.

n Send bug reports to the above address — there are some!
n The Verilog Hardware Description Language, Fourth Edition

is available from Kluwer Academic Publishers,
http://www.wkap.com.   Phone: 781-871-6600.

n University faculty wanting access to a PowerPoint version of
the slides should contact the author at the above address.
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Simulation of Digital Systems

n Simulation —
lWhat do you do to test a software program you write?

- Give it some inputs, and see if it does what you expect
- When done testing, is there any assurance the program is bug

free? — NO!
- But, to the extent possible, you have determined that the

program does what you want it to do

l Simulation tests a model of the system you wish to build
- Is the design correct? Does it implement the intended function

correctly? For instance, is it a UART
l Stick in a byte and see if the UART model shifts it out correctly

- Also, is it the correct design?
l Might there be some other functions the UART could do?
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Simulation of Digital Systems

n  Simulation checks two properties
l functional correctness — is the logic correct

- correct design, and design correct
l timing correctness — is the logic/interconnect timing correct

- e.g. are the set-up times met?

n It has all the limitations of software testing
l Have I tried all the cases?
l Have I exercised every path?  Every option?



4© Don Thomas, 1998, 4

Modern Design Methodology
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Synthesizable Verilog
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Tech
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Mapping
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clb 2

Place
and
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gates, gates, gates, …

Simulation and Synthesis are components of a design methodology
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Representation: Structural Models

n Structural models
l Are built from gate primitives and/or other modules
l They describe the circuit using logic gates — much as you would

see in an implementation of a circuit.
- You could describe your lab1 circuit this way

n Identify:
l Gate instances, wire names, delay from a or b to f.

module mux (f, a, b, sel);
  output f;
 input a, b, sel;

 and #5 g1 (f1, a, nsel),
g2 (f2, b, sel);

or    #5 g3 (f, f1, f2);
not g4 (nsel, sel);

endmodule

a

b

f

sel
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Representation: Gate-Level Models

n Need to model the gate’s:
l Function
l Delay

n Function
l Generally, HDLs have built-in gate-level primitives

- Verilog has NAND, NOR, AND, OR, XOR, XNOR, BUF, NOT, and
some others

l The gates operate on input values producing an output value
- typical Verilog gate instantiation is:

 and #delay  instance-name (out, in1, in2, in3, …);

optional “many”
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Four-Valued Logic

n Verilog Logic Values
l The underlying data representation allows for any bit to have one

of four values
l 1, 0, x (unknown), z (high impedance)
l x — one of: 1, 0, z, or in the state of change
l z — the high impedance output of a tri-state gate.

n What basis do these have in reality?
l 0, 1 … no question
l z … A tri-state gate drives either a zero or one on its output.  If it’s

not doing that, its output is high impedance (z).  Tri-state gates are
real devices and z is a real electrical affect.
l x … not a real value.  There is no real gate that drives an x on to a

wire.  x is used as a debugging aid.  x means the simulator can’t
determine the answer and so maybe you should worry!

n BTW …
l some simulators keep track of more values than these.  Verilog will

in some situations.
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Four-Valued Logic

n Logic with multi-level logic values
l Logic with these four values make sense

- Nand anything with a 0, and you get a 1.  This includes having
an x or z on the other input.  That’s the nature of the nand gate

- Nand two x’s and you get an x
l Note: z treated as an x on input.  Their rows and columns are the

same
l If you forget to connect an input … it will be seen as an z.
l At the start of simulation, everything is an x.

 Nand 0 1 x z
 0 1 1 1 1
 1 1 0 x x
 x 1 x x x
 z 1 x x x

A 4-valued truth table for a
Nand gate with two inputs

In
p

u
t 

A

Input B
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How to build and test a module

n Construct a “test bench” for your design
l Develop your hierarchical system within a module that has input and

output ports (called “design” here)
l Develop a separate module to generate tests for the module (“test”)
l Connect these together within another module (“testbench”)

module design (a, b, c);
 input a, b;
 output c;

…

module test (q, r);
output q, r;

initial begin
//drive the outputs with signals
…

module testbench ();
 wire l, m, n;

design d (l, m, n);
test t (l, m);

initial begin
//monitor and display
…
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Another view of this

n 3 chunks of verilog, one for each of:

Your hardware
called

DESIGN

TESTBENCH is the final piece of hardware which
connect DESIGN with TEST so the inputs generated
go to the thing you want to test...

Another piece of
hardware, called

TEST, to generate
interesting inputs
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A Previous Design

Module testAdd generated inputs for module halfAdd and
displayed changes.  Module halfAdd was the design

module tBench;
wire su, co, a, b;

halfAdd ad(su, co, a, b);
testAdd tb(a, b, su, co);

endmodule

module halfAdd (sum, cOut, a, b);
output sum, cOut;
input a, b;

xor #2 (sum, a, b);
and #2 (cOut, a, b);

endmodule

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,
   “a=%b, b=%b, sum=%b, cOut=%b”,
     a, b, sum, cOut);
a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule
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module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,
   “a=%b, b=%b, sum=%b, cOut=%b”,
   a, b, sum, cOut);
a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule

The test module
n It’s the test generator
n $monitor
l prints its string when executed.
l after that, the string is printed

when one of the listed values
changes.
l only one monitor can be active

at any time
l prints at end of current

simulation time

n Function of this tester
l at time zero, print values and set

a=b=0
l after 10 time units, set b=1
l after another 10, set a=1
l after another 10 set b=0
l then another 10 and finish
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Other things you can do

n More than modeling hardware
l $monitor — give it a list of variables.  When one of them changes, it prints

the information.  Can only have one of these active at a time.
e.g. …

- $monitor ($time,,, “a=%b, b=%b, sum=%b, cOut=%b”,a, b, sum, cOut);

- The above will print:
   2 a=0, b=0, sum=0, cOut=0<return>

l $display() — sort of like printf()
- $display (“Hello, world — %h”, hexvalue)

extra commas
print a spaces

%b is binary (also,
%h, %d and others)

newline
automatically

included

display contents of data item called
“hexvalue” using hex digits (0-9,A-F)

What if what
you print has

the value x or z?
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Structural vs Behavioral Models

n Structural model
l Just specifies primitive gates and wires
l i.e., the structure of a logical netlist
l You basically know how to do this now.

n Behavioral model
l More like a procedure in a programming language
l Still specify a module in Verilog with inputs and outputs...
l ...but inside the module you  write code to tell what you want to have

happen, NOT what gates to connect to make it happen
l i.e., you specify the behavior you want, not the structure to do it

n Why use behavioral models
l For testbench modules to test structural designs
l For high-level specs to drive logic synthesis tools (Lab 2)
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How do behavioral models fit in?

n How do they work with
the event list and
scheduler?
l Initial (and always) begin

executing at time 0 in
arbitrary order
l They execute until they

come to a “#delay”
operator
l They then suspend, putting

themselves in the event list
10 time units in the future
(for the case at the right)
l At 10 time units in the

future, they resume
executing where they left
off.

n Some details omitted
l ...more to come

module testAdd(a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,
   “a=%b, b=%b, 
   sum=%b, cOut=%b”,
   a, b, sum, cOut);
a = 0; b = 0;
#10 b = 1;
#10 a = 1;
#10 b = 0;
#10 $finish;

end
endmodule
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Two initial statements?

n Things to note
lWhich initial statement starts first?
lWhat are the values of a, b, and out when

the simulation starts?
l These appear to be executing concurrently

(at the same time).  Are they?

…
initial begin

a = 0; b = 0;
#5 b = 1;
#13 a = 1;

end
…
initial begin

out = 1; 
#10 out = 0; 
#8 out = 1;

end
…

1

0

1

0

1

0
0 10 18

a

b

out
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What do we mean by “Synthesis”?

n Logic synthesis
l A program that “designs” logic from abstract descriptions of the

logic
- takes constraints (e.g. size, speed)
- uses a library (e.g. 3-input gates)

n How?
l You write an “abstract” Verilog description of the logic
l The synthesis tool provides alternative implementations

Verilog blah
blah blah or …synthesis

library

constraints
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An example

n What’s cool?
l You type the left, synthesis gives you the gates
l It used a different library than you did. (2-input gates only)
l One description suffices for a variety of alternate implementations!

n Hmmm …
l ... but this assumes you know a gate level implementation — that’s

not an “abstract” Verilog description.

a

b

c

f

module gate (f, a, b, c);
output f;
input a, b, c;

and A (a1, a, b, c),
B (a2, a, ~b, ~c),
C (a3, ~a, o1);

or D (o1, b, c),
E (f, a1, a2, a3);

endmodule

module gate (f, a, b, c);
output f;
input a, b, c;

and A (a1, a, b, c),
B (a2, a, ~b, ~c),
C (a3, ~a, o1);

or D (o1, b, c),
E (f, a1, a2, a3);

endmodule
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What Do We Want Here...?

n Goal
l To specify a combination ckt, inputs->outputs…
l… in a form of Verilog that synthesis tools will correctly read
l… and then use to make the right logic

n And...
lWe know the function we want, and can specify in C-like form...
l… but we don’t now the exact gates;  we want the tool to do this.

Combinational
Logic

A

B

C

F
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Behavioral Modeling

n Procedural statements are used
l Statements using “always” Verilog construct
l Can specify both combinational and sequential circuits

n Normally don’t think of procedural stuff as “logic”
l They look like C:  mix of ifs, case statements, assignments …
l… but there is a semantic interpretation to put on them to allow them

to be used for simulation and synthesis (giving equivalent results)

n Current technology
l You can do combinational (and later, sequential) design
l Sizable designs can take hours … days … to run
l Companies pay $50K - 80K per copy for such software

- This ain’t shrink-wrap software!
l The software we’ll use is more like $10-15K
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Behavioral Constructs

n Behavioral descriptions are introduced by initial and
always statements

n Points:
l They all execute concurrently
l They contain behavioral statements like if-then-else, case, loops,

functions, …

initial

always

Starts when
simulation

starts

Execute once
and stop

Continually loop—
while (power on)
do statements;

Not used in
synthesis

Used in
synthesis

Statement Starts How it works Use in Synthesis?Looks like

initial
begin
…
end

always
begin
…
end
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Statements, Registers and Wires

n Registers
l Define storage, can be more than

one bit
l Can only be changed by assigning

value to them on the left-hand side
of a behavioral expression.

n Wires (actually “nets”)
l Electrically connect things

together
l Can be used on the right-hand

side of an expression
- Thus we can tie primitive

gates and behavioral blocks
together!

n Statements
l left-hand side = right-hand side
l left-hand side must be a register
l Four-valued logic

module silly (q, r);
reg [3:0] a, b;
wire [3:0] q, r;

always begin
…
a =  (b & r) | q;
…
q = b;
…

end
endmodule

Can’t do — why?

Logic with
registers
and wires

Multi-bit
registers
and wires
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Behavioral Statements

n if-then-else
lWhat you would expect, except that it’s

doing 4-valued logic. 1 is interpreted as
True; 0, x, and z are interpreted as False

n case
lWhat you would expect, except that it’s

doing 4-valued logic
l If “selector” is 2 bits, there are 42 possible

case-items to select between
l There is no break statement — it is

assumed.

n Funny constants?
l Verilog allows for sized, 4-valued

constants
l The first number is the number of bits, the

letter is the base of the following number
that will be converted into the bits.

 8’b00x0zx10

if (select == 1)
f = in1;

else f = in0;

case (selector)
2’b00: a = b + c;
2’b01: q = r + s;
2’bx1: r = 5;
default: r = 0;

endcase

assume f, a, q, and r
are registers for this
slide
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Behavioral Statements

n Loops
l There are restrictions on using these for synthesis — don’t.
l They are mentioned here for use in test modules

n Two main ones — for and while
l Just like in C
l There is also repeat and forever — see the book

reg [3:0] testOutput, i;
…
for (i = 0; i <= 15; i = i + 1) begin

testOutput = i;
#20;

end

reg [3:0] testOutput, i;
…
i = 0; 
while (i <= 15)) begin

testOutput = i;
#20 i = i + 1;

end

Important:  Loops must have a delay operator (or as we’ll see
later, an @ or wait(FALSE)).  Otherwise, the simulator never stops
executing them.
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Test Module, continued

n Bit Selects and Part Selects
l This expression extracts bits or ranges of bits or a wire or register

module testgen (i[3], i[2], i[1], i[0]);
reg [3:0] i; output i;
always

for (i = 0; i <= 15; i = i + 1) 
#20;

endmodule

module top;
wire w0, w1, w2, w3;

testgen t (w0, w1, w2, w3);
design d (w0, w1, w2, w3);
end

module design (a, b, c, d);
input a, b, c, d;

mumble, mumble, blah, blah;
end

The individual bits of register i
are made available on the ports.
These are later connected to
individual input wires in module
design.

A
lte

rn
at

e:

module testgen (i);
reg [3:0] i; output i;
always

for (i = 0; i <= 15; i = i + 1)
#20;

endmodule

module top;
wire [3:0] w;

testgen t (w);
design d (w[0], w[1], w[2], w[3]);
end
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Concurrent Constructs

n We already saw #delay
n Others
l@  … Waiting for a change in a value — used in synthesis

- @ (var) w = 4;
- This says wait for var to change from its current value.  When it

does, resume execution of the statement by setting w = 4.
lWait … Waiting for a value to be a certain level — not used in

synthesis
- wait (f == 0) q = 3;
- This says that if f is equal to zero, then continue executing and

set q = 3.
- But if f is not equal to zero, then suspend execution until it does.

When it does, this statement resumes by setting q = 3.

n Why are these concurrent?
l Because the event being waited for can only occur as a result of the

concurrent execution of some other always/initial block or gate.
l They’re happening concurrently
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FAQs: behavioral model execution
n How does an always or initial statement start
l That just happens at the start of simulation — arbitrary order

n Once executing, what stops it?
l Executing either a #delay, @event, or wait(FALSE).
l All always blocks need to have at least one of these.  Otherwise, the

simulator will never stop running the model --  (it’s an infinite loop!)

n How long will it stay stopped?
l Until the condition that stopped it has been resolved

- #delay … until the delay time has been reached
- @(var) … until var changes
- wait(var) … until var becomes TRUE

n Does time pass when a behavioral model is executing?
l No.  The statements (if, case, etc) execute in zero time.
l Time passes when the model stops for #, @, or wait.

n Will an always stop looping?
l No. But an initial will only execute once.



28© Don Thomas, 1998, 28

A Combinational Circuit

n Using behavioral constructs
l Logic for a simple MUX is specified procedurally here
l This example is synthesizable

module mux (f, sel, b, c);
output f;
input sel, b, c;
reg f;

always @ (sel or b or c)
if (sel == 1)

f = b;
else

f = c;
endmodule

Read this as follows:
Wait for any change on a, b, or c,
then execute the begin-end block
containing the if.  Then wait for
another change.

Read this as follows:
Wait for any change on a, b, or c,
then execute the begin-end block
containing the if.  Then wait for
another change.

This  “if” functionally describes the MUXThis  “if” functionally describes the MUX

sel

f
b

c

Logic Synthesized
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Is it really correct?

n Problem?
lWhere’s the register?
 The synthesis tool figures out that this

is a combinational circuit.  Therefore, it
doesn’t need a register.
The register is there as an “artifact” of
the descriptions — things on the left-
hand side have to be registers.
l How does it figure out that this is

combinational?
- The output is only a function of

the inputs (and not of previous
values)

- Anytime an input changes, the
output is re-evauated

l Think about the module as being a
black box …

- Could you tell that there is a
register in there?

module mux (f, sel, b, c);
output f;
input sel, b, c;
reg f;

always @ (sel or b or c)
if (sel == 1)

f = b;
else

f = c;
endmodule

f
b

c
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Synthesis Template

n Using procedural statements in Verilog
l Logic is specified in “always” statements (“Initial” statements are not

allowed).
l Each “always” statement turns into Boolean functions

module blah (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
begin

stuff...
stuff...
stuff...

end
endmodule

You have to declare the combinational
outputs like this, for synthesis. i.e., tool
needs to think you are putting these
computed outputs someplace.

You have to declare the combinational
outputs like this, for synthesis. i.e., tool
needs to think you are putting these
computed outputs someplace.

Actually do logic in here. There are a
bunch of subtle rules to ensure that
synthesis won’t mess this up...   We’ll
see how…

Actually do logic in here. There are a
bunch of subtle rules to ensure that
synthesis won’t mess this up...   We’ll
see how…

You have to list all the block’s inputs
here in the “sensitivity list”

You have to list all the block’s inputs
here in the “sensitivity list”
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How? … A Few Definitions

n There are some restrictions on specification
l Input set of an “always” statement — the set of all variables that are

used on the right-hand side of procedural assignments or in
conditionals.  i.e. anything “sourced”.
l Sensitivity list of an “always” statement — the set of all names that

appear in the event (“@”) list.

The elements in these lists are:module mux (f, sel, b, c);
output f;
input sel, b, c;
reg f;

always @ (sel or b or c)
if (sel == 1)

f = b;
else

f = c;
endmodule
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More Definitions...

n …
l A control path of an “always” statement — a sequence of operations

performed when executing the always statement
l Combinational output of an “always” statement — a variable (or

variables) assigned to in every control path

What are they here...module mux (f, sel, b, c);
output f;
input sel, b, c;
reg f;

always @ (sel or b or c)
if (sel == 1)

f = b;
else

f = c;
endmodule
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The Basic Rules

n The rules for specifying combinational logic using
procedural statements
l Every element of the input set must be in the sensitivity list
l The combinational output must be assigned in every control path

Walking this narrow line allows
you to specify and synthesize
combinational logic

Walking this narrow line allows
you to specify and synthesize
combinational logic

So, we’re saying that if any input
changes, then the output is re-
evaluated. — That’s the definition
of combinational logic.

So, we’re saying that if any input
changes, then the output is re-
evaluated. — That’s the definition
of combinational logic.

module mux (f, sel, b, c);
output f;
input sel, b, c;
reg f;

always @ (sel or b or c)
if (sel == 1)

f = b;
else

f = c;
endmodule
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What If You Mess Up?

n If you don’t follow the rules...? … you’re dead meat
l Verilog assumes you are trying to do something clever with the timing
l It’s legal, but it won’t be combinational
l The rules for what it does make sense -- but not yet for us.

module blah (f, g, a, b, c);
output f, g;
input a, b, c;
reg  f, g;

always @ (a or b or c)
if (a == 1)

f = b;
else

g = c;
endmodule

What’s wrong?

f doesn’t appear in every control path
in the always block (neither does g).

What’s wrong?

f doesn’t appear in every control path
in the always block (neither does g).

This says: as long as a==1, then f
follows b. (i.e. when b changes, so
does f.)  But, when a==0, f remembers
the old value of b.

Combinational circuits don’t remember
anything!

This says: as long as a==1, then f
follows b. (i.e. when b changes, so
does f.)  But, when a==0, f remembers
the old value of b.

Combinational circuits don’t remember
anything!
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Typical Style

n Your Verilog for combination stuff will look like this:

n Yes...it’s a pretty restricted subset of the langauge...

module blah (<output names>, <input names>);
output <output names>;
input <input names>;
reg  <output names>;

always @ (<names of all input vars>)
begin

< LHS = RHS assignments>
< if ... else  statements>
< case statements >

end
endmodule
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A Difficulty

n Assigning in every control path
l If the function is complex, you don’t know if you assigned to the

outputs in every control path.
l So, set all outputs to some known value (zero here) and write the

code to set them to other values as needed.
l Synthesis tools will figure it out.

always @(coke or cola) begin
blah1 = 0;
blah2 = 0;
if (coke)

blah1 = 1;
else if (cola > 2’b01)

blah2 = coke;
else if ( …
…

end

always @(coke or cola) begin
if (coke)

blah1 = 1;
else if (cola > 2’b01)

blah2 = coke;
else if ( …
…

end
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Using a case statement

n Truth table method
l List each input combination
l Assign to output(s) in each

case item.

n Concatenation
l {a, b, c} concatenates a, b,

and c together, considering
them as a single item
l Example
 a = 4’b0111
 b = 6’b 1x0001
 c = 2’bzx
then {a, b, c} =

12’b01111x0001zx

module fred (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
3’b111: f = 1’b1;

endcase
endmodule

Check the rules …
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How about a Case Statement Ex?

n Here’s another version ...
module fred (f, a, b, c);

output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
3’b111: f = 1’b1;

endcase
endmodule

module fred (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b000: f = 1’b0;
3’b101: f = 1’b0;
3’b110: f = 1’b0;
default: f = 1’b1;

endcase
endmodule

check the rules…

Important: every control path is specified

Could put
a

function
here too
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Don’t Cares in Synthesis

n Rules
l You can’t say

 “if (a == 1’bx)…” — this
has meaning in simulation,
but not in synthesis.
l However, an unknown x

on the right-hand side will
be interpreted as a don’t
care.

module caseExample(f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
case ({a, b, c})

3’b001: f = 1’b1;
3’b010: f = 1’b1;
3’b011: f = 1’b1;
3’b100: f = 1’b1;
3’b111: f = 1’b1;
3’b110: f = 1’b0;
default: f = 1’bx;

endcase
endmodule

a

b

~c

f

00   01   11   10

0

1

ab

c
1 1

11 1

0x

x The inverse function was implemented;
x’s taken as ones.
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Alternatively…

l These aren’t quite
equivalent to the
previous
slide…why?

00   01   11   10

0

1

ab

c
1 1

11 1

0x

x

module fred1 (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
f = ~(a & b & ~c);

endmodule

module fred2 (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
f = ~a | c | ~b;

endmodule

module fred3 (f, a, b, c);
output f;
input a, b, c;
reg f;

always @ (a or b or c)
begin

if (c ==0)
f = a~&b;

else f = 1’b1;
end

endmodule
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Two inputs, Three outputs
reg   [1:0] newJ;
reg out;
input i, j;
always @(i or j)

case (j)
2’b00: begin

newJ = (i == 0) ? 2’b00 : 2’b01;
out = 0;

end
 2’b01 : begin

newJ = (i == 0) ? 2’b10 : 2’b01;
out = 1;

end
 2’b10 : begin

newJ = 2’b00;
out = 0;

end
default: begin

newJ = 2’b00;
out = 1'bx;

end
endcase

Works like the C
conditional operator.

(expr) ? a : b;

If the expr is true,
then the resulting
value is a, else it’s b.

Works like the C
conditional operator.

(expr) ? a : b;

If the expr is true,
then the resulting
value is a, else it’s b.
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Behavioral Model Sensitivity

n Quick example
l Gate A changes its output, gates B and C are evaluated to see if their

outputs will change, if so, their fanouts are also followed…
l The behavioral model will only execute if it was waiting for a change

on the D input
lWhat order will the gates and behavioral model execute in.

Behavioral
model

A

B

C

D

always @ (D) 
begin 

yadda yadda
 end

Will this execute?

always @ (F) 
begin 

yadda yadda
b = D;

 end

Will this execute?
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What about time delay

n Could we have described
the module as shown here?
l Note the delays.  There is a

different delay from the b input
than from the c input.
l Yes, you could write this

n But,
l Synthesis tools will ignore the

time delays.
l Generally, they try to minimize the

propagation from any
combinational input to any
combinational output in the
system.

module mux (f, sel, b, c);
output f;
input sel, b, c;
reg f;

always @ (sel or b or c)
if (sel == 1)

#5 f = b;
else

#88 f = c;
endmodule
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Model Organization

n Here’s an always block for a
combinational function.
lWhat Boolean functions can it model?

l Can I have more than one of these
always blocks in a module?

 Yes
l Can two separate always calculate

function f?
 No

always @(b1 or b2 or b3)
begin

yadda yadda
end

Only those with inputs
b1, b2, and b3 (or subset)

module xyzzy (ports);
…
always @(b1 or b2 or b3)

begin
q = b1 … b2 … b3
 r = b2 … b3

end
always @(r1 or r2 or r3)

begin
s = yadda yadda yadda

end

module xyzzy (ports);
…
always @(b1 or b2 or b3)

begin
f = yadda;

end
always @(r1 or r2 or r3)

begin
f = yadda yadda;

end

N
op

e!
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Model Organization Trade-Off

n Module partitioning can affect logic optimizations
l Here are two modules
l The output of blob1 is connected to blob2
l The synthesis tool will optimize them separately

- No common prime implicants, etc, will be shared or optimized
between the two modules.

l Alternate
- Put everything in one module
- Now there’s a possibility

for optimization between
functions

module blob1(inputs, outputs1)
…
always @(inputs)

outputs1 = blah & inputs;
endmodule

module blob2(inputs, outputs2)
…
always @(inputs)

outputs2 = blah & inputs;
endmodule

module blob1_2(inputs, outputs)
always @(inputs)

outputs1 = blah & inputs;
always @(outputs1)

outputs = blah & outputs1;
endmodule



46© Don Thomas, 1998, 46

Verilog Overview

n Verilog is a concurrent language
l Aimed at modeling hardware — optimized for it!
l Typical of hardware description languages (HDLs), it:

- provides for the specification of concurrent activities
- stands on its head to make the activities look like they happened

at the same time
l Why?

- allows for intricate timing specifications

n A concurrent language allows for:
l Multiple concurrent “elements”
l An event in one element to cause activity in another. (An event is an

output or state change at a given time)
- based on interconnection of the element’s ports

l Further execution to be delayed
- until a specific event occurs
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 Discrete Event Simulation

n Quick example
l Gate A changes its output.  This causes gates B and C to

execute
- But as we’ll see, A doesn’t call B and C (as in a

function call)
- Rather, they execute because they’re connected

n Observation
l The elements in the diagram don’t need to be logic gates
l SimCity is a discrete event simulator, Verilog too

n Discrete Event Simulation
l Events — changes in state — occur at discrete times.

These cause other events to occur.
l Time advances in discrete (not continuous) steps

A

B

C
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Contrast

n Non-discrete Event Simulation
l Continuous systems — all elements and state are updated at every

simulation time
l Could you do logic circuits that way too?

- …
l e.g. analog circuits, numerical integration …

- differential equations to solve
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Discrete Event Simulation

n Basic models — things not found in C
l gate level — built-in models for AND, OR, …

- When an input to one of these changes, the model executes to
see if its output should change

l behavioral level — sort-of C-like programs but with a few extra
operators

- Executes until it blocks for one of three reasons — #delay,
wait(level), or @(event) — when the reason for blocking is
resolved, it continues executing

- Does C have any notion of these?

l Gate and behavioral models can advance time
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How does it keep track of time?

n Explicitly
l Events are stored in an event list (actually a 2-D list) ordered by time
l Events execute at a time and possibly schedule their output to

change at a later time (a new event)
lWhen no more events for the current time, move to the next
l Events within a time are executed in arbitrary order

time a

time a+75

…

time a+75492

eventevent event

event

Let’s say A
changes to 0
here. B and C
have delay 2.

Let’s say A
changes to 0
here. B and C
have delay 2.

A

B

C

1

1
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Approach to Simulating a System

n Two pieces of a simulation
l The model — an executable specification including timing,

interconnect, and input vectors
- Written in a language like Verilog or VHDL
- What’s a VHDL?

l The simulation scheduler —
- keeps track of when events occur,
- communicates events to appropriate parts of the model,
- executes the model of those parts, and
- as a result, possibly schedules more events for a future time.

- it maintains “simulated time” and the event list.
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Verilog Levels of Abstraction

n Gate modeling
l the system is represented in terms of primitive gates and their

interconections
- NANDs, NORs, …

n Behavioral modeling
l the system is represented by a program-like language

DD always
    @posedge clock

  Q = #5 D

gate-level model behavioral model

Q Q
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Mixing Levels

n Generally there is a mix of levels in a model
l e.g. part of the system is at the gate level and another part is at the

behavioral level.
lWhy?

- Early in design process you might not have fully-detailed
models — you don’t actually know all the gate implementations
of the multipliers, adders, register files

- You might want to think of the design at a conceptual level
before doing all the work to obtain the gate implementations

- There might be a family of implementations planned
l Levels — switch, gate, functional block (e.g. ALUs), register-transfer,

behavioral
- for now, we’ll deal with gate and behavioral models

l These are all modeled as discrete systems — no continuous
modeling of analog behavior
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A Gate Level Model

n A Verilog description of an SR latch

set

reset

q

qBar

g1

g2
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A Gate Level Model

n A Verilog description of an SR latch

module nandLatch (q, qBar, set, reset);
 output q, qBar;
 input set, reset;
 
 nand #2
 g1 (q, qBar, set),
 g2 (qBar, q, reset);
endmodule

A module
is defined

name of the
module

the module
has ports

ports are
typed

primitive gates with
names and

interconnections

type and
delay of

gates

set

reset

q

qBar

g1

g2
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A Gate Level Model

n Things to note:
l It doesn’t appear “executable” — no for loops, if-then-else, etc.

- it’s not in a programming sense, rather it describes the
interconnection of elements

l A new module made up of other modules has been defined
- software engineering aspect — we can hide detail

module nandLatch (q, qBar, set, reset);
 output q, qBar;
 input set, reset;
 
 nand #2
 g1 (q, qBar, set),
 g2 (qBar, q, reset);
endmodule
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n But, there is an execution model
n Gate-level timing model
l Timing model — how time is advanced, what triggers new

processing in the model
l Here — when any of the inputs of a primitive gate change, the output

is re-evaluated.  If there is a new result, it is passed on to other gates
on its fanout.

module nandLatch (q, qBar, set, reset);
 output q, qBar;
 input set, reset;
 
 nand #2
 g1 (q, qBar, set),
 g2 (qBar, q, reset);
endmodule

Execution model
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Behavioral Modeling

n Why not describe a module’s function and delay using
a language like C?
l Sound like fun, here goes

module d_type_FF (q, clock, data);
 output q;
 reg q;
 input clock, data;

  always
 @(negedge clock) q = #10 data;
endmodule

@ …  — wait for a negative edge on clock, evaluate “data” now and wait
10 time units.  Then assign q to that value and wait for the next negedge

@ …  — wait for a negative edge on clock, evaluate “data” now and wait
10 time units.  Then assign q to that value and wait for the next negedge

always — “while TRUE”
Continuously do the
following statement.

always — “while TRUE”
Continuously do the
following statement.

reg — declares a one-bit
register.  Can be thought
of as being similar to a
variable in programming.
BTW, each instantiation
of this module will have a
separate register q.

reg — declares a one-bit
register.  Can be thought
of as being similar to a
variable in programming.
BTW, each instantiation
of this module will have a
separate register q.
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Behavioral Modeling

n Comparison
l These two models are interchangable — either could have been

instantiated into a register
- ports in same order
- same delay from clock to q
- one is abstract, clear
- one is specific
- there are subtle differences

module d_type_FF (q, clock, data);
 output q;
 reg q;
 input clock, data;

  always
 @(negedge clock) q = #10 data;
endmodule

Behavioral

module d_type_FF (q, clock, data);
input clock, data;
output q;
wire q, qBar, r, s, r1, s1;

nor #10
a (q, qBar, r);

nor
b (qBar, q, s),
c (s, r, clock, s1),
d (s1, s, data),
e (r, r1, clock),
f (r1, s1, r);

endmodule Structural
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At first look, it is a lot like C

n Most of the operators are the same as C
l ^ is XOR, etc.
lmakes it easy to read

n But there are major differences (quick list, we’ll get to
these)
l statements like #delay, @event, wait(level)

- the language is concurrent — can specify many things that can
happen at the same time.

l four-valued logic (1, 0, x, z) and the operators to go with them
l arbitrary bit width specification
l there are a couple of procedural assignments (=, <=) with subtle

differences
l a different timing model
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Behavioral Timing Model  (Not fully detailed here)

n How does the behavioral model advance time?
l # — delaying a specific amount of time
l@ — delaying until an event occurs (“posedge”, “negedge”, or any

change)
- this is edge-sensitive behavior

l wait — delaying until an event occurs (“wait (f == 0)”)
- this is level sensitive behavior

n What is a behavioral model sensitive to?
l any change on any input? — No
l any event that follows, say, a “posedge” keyword

- e.g. @posedge clock
- Actually “no” here too. — not always
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What are behavioral models sensitive
to?

n Quick example
l Gate A changes its output, gates B and C are evaluated to see if their

outputs will change, if so, their fanouts are also followed…
l The behavioral model will only execute if it was waiting for a change

on the A input

Behavioral
model

A

B

C

A

always @(A) 
begin 

B = ~A;
 end

always @(posedge clock)
Q <= A;

This would execute

This wouldn’t

…



63© Don Thomas, 1998, 63

Order of Execution

n In what order do these models execute?
l Assume A changes.  Is B, C, or the behavioral model executed first?

- Answer: the order is defined to be arbitrary
l All events that are to occur at a certain time will execute in an

arbitrary order.
l The simulator will try to make them look like they all occur at the

same time — but we know better.

Behavioral
model

A

B

C

A

always @(A) 
begin 

yadda yadda
 end
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Arbitrary Order?  Oops!

n Sometimes you need to
exert some control
l Consider the

interconnections of this D-
FF
l At the positive edge of c,

what models are ready to
execute?

lWhich one is done first?

module dff(q, d, c);
…
always @(posedge c)

q = d;
endmodule

module sreg (…);
…
dff a (q0, shiftin, clock),

b (q1, q0, clock),
c (shiftout, q1, clock);

endmodule

QDQD QD

clock

shiftin shiftoutOops — The order of
execution can matter!

film at 11
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Some more gate level examples

n An adder

module  adder (carryOut, sum, aInput, bInput, carryIn);
 output carryOut, sum;
 input aInput, bInput, carryIn;

 xor (sum, aInput, bInput, carryIn);
 or (carryOut, ab, bc, ac);
 and (ab, aInput, bInput),
 (bc, bInput, carryIn),
 (ac, aInput, carryIn);
endmodule

aInput

bInput

carryIn

carryOut

sum

list of gate instances of
same function (and)

list of gate instances of
same function (and)

no instance
names or

delays

no instance
names or

delays

implicit wire
declarations

implicit wire
declarations

ab

bc

ac
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Adder with delays

n An adder with delays

module  adder (carryOut, sum, aInput, bInput, carryIn);
 output carryOut, sum;
 input aInput, bInput, carryIn;

 xor #(3, 5) (sum, aInput, bInput, carryIn);
 or #2 (carryOut, ab, bc, ac);
 and #(3, 2) (ab, aInput, bInput),
 (bc, bInput, carryIn),
 (ac, aInput, carryIn);
endmodule

each AND gate
instance has the

same delay

each AND gate
instance has the

same delay
and #(3, 2) (ab, aInput, bInput),

 (bc, bInput, carryIn);
and #(17, 13)(ac, aInput, carryIn); 

and #(3, 2) (ab, aInput, bInput),
 (bc, bInput, carryIn);

and #(17, 13)(ac, aInput, carryIn); alternate timing

what’s this
mean?
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Adder, continuous assign

n Using “continuous assignment”
l Continuous assignment allows you to specify combinational

logic in equation form
l Anytime an input (value on the right-hand side) changes, the

simulator re-evaluates the output
l No gate structure is implied — logic synthesis can design it.

- the description is a little more abstract
l A behavioral function may be called — details later
module  adder (carryOut, sum, aInput, bInput, carryIn);
 output carryOut, sum;
 input aInput, bInput, carryIn;

 assign sum =  aInput ^ bInput ^ carryIn,
 carryOut = (aInput & bInput) | (bInput & carryIn) |
      (aInput & carryIn);
endmodule
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I’m sick of this adder

n Continuous assignment assigns continuously
l delays can be specified (same format as for gates) on whole

equation
l no instances names — nothing is being instantiated.
l given the same delays in this and the gate-level model of an adder,

there is no functional difference between the models
- FYI, the gate-level model gives names to gate instances,

allowing back annotation of times.

module  adder (carryOut, sum, aInput, bInput, carryIn);
 output carryOut, sum;
 input aInput, bInput, carryIn;

 assign #(3, 5) sum =  aInput ^ bInput ^ carryIn;
 assign #(4, 8) carryOut = (aInput & bInput) | (bInput & carryIn) |
 (aInput & carryIn);
endmodule
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Continuous Assign

n Using continuous assign vs gate instantiations

random
logic

multibit
datapath
elements

abstract detailed,
specific

used for
specifying
unknowns

typically no
notion of wire

delays

which goes with which?

drives
wires

loads
registers
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Gate level timing model

n Execution model
l execution model — how time advances and new values are created
l a fundamental concept in any language

n Gate level timing model
l applies to both primitive instantiations and continuous assigns

n Definition —
l when an input changes, the simulator will evaluate the primitive or

continuous assign statement, calculating a new output
l if the output value is different, it is propagated to other primitive and

assign inputs
l nothing said yet about behavior.
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Gate level timing model

n What’s an input?
l an input to a gate primitive
l anything on the right-hand side of the “=” in a continuous assign

n What’s an output?
l the output of a gate primitive
l anything on the left-hand side of the “=” in a continuous assign

n Outputs on this “side” of the language are all …
l… wires
l no registers are latched/loaded, no need to know about a clock event
l i.e. the left-hand sides are all wires

n Contrast
l  The left-hand sides on the behavioral “side” of the language are all

registers
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Event-Driven Simulation

n How does the simulator execute a gate-level model
n Event-driven simulation
l Event — a value-change occurs at a given time
l The event-driven simulator only executes models when events occur

- (some simulators execute every model every time unit)

Scheduler

Gate
Models

Network Connections
(fanouts)

executeslooks 
at

schedules
new event

remove current
eventstime ordered

event list

Gate
Outputs

updates
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Events

n Two types of events
l Evaluation events — evaluate, or execute, a gate model or

continuous assign.
- produce update events
- i.e. if the output changes, schedule an update event

l Update events — propagate new values along a fanout.
- produce evaluation events
- for each element on the fanout, schedule an evaluation event

n We’ll treat these as separate types of events
l gate level simulators generally combine them for efficiency
l i.e. when an output is updated, instead of scheduling an evaluation,

just do the evaluation and schedule any updates resulting from it.
lWe’ll keep them separate for now — it will help in the later

discussion of behavioral models
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Event-Driven Simulation

u
e

e u

while something in time-ordered event list {
 advance simulation time to top event’s time
 retrieve all events for this time
 

For each event in arbitrary order
If it’s an update event

Update the value specified.
Follow fanout and evaluate gate models.
Schedule any new updates from gates.
Schedule eval events for behavioral models

 else // it’s an evaluation event
 evaluate the model
 schedule resulting update events
}
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Event-Driven Simulation

Update
A=1 at

25
g2 #3

g1 #2

g3 #5

1

1

0
A=0

B=1

C=0

D=1

init 
values as 

shown

init 
values as 

shown

init 
values as 

shown

Update
A=1 at

25

Update
A=1 at

25
g2 #3

g1 #2

g3 #5

1

1

0
A=1

B=0

C=0

D=1

the event list
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Event-driven simulation

init 
values as 

shown

Update
A=1 at

25

init 
values as 

shown

Update
A=1 at

25

init 
values as 

shown

Update
A=1 at

25

g2 #3

g1 #2

g3 #5

1

1

0
A=1

B=0

C=1

D=1

final
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Gate level timing model

n What if an update event is already scheduled for an
output?
l if the value being scheduled is different, the currently scheduled

value is removed from the event list; the new is not scheduled
l thus, any input pulse shorter than the propagation delay will not be

seen  (inertial delay)

a

b=1

a
b c

c

propagation
delay = 5

update scheduled

update removed, 
final value

nand #5 (c, a, b);

what happens
in four-valued

logic?
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Scheduling and event list management

n Can think of the event list as a 2-D linked list
l One dimension links all the events for a given time
l The second dimension links these lists in ascending order

n Problem
l inefficient — most events are near in time to the current one, thus

lots of linked list bashing

time a

time a+1

time a+3

time a+2

…

time a+99692

eventevent event

event

event event

event
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Scheduling and event list management

n Hack of the rich and famous — “Timing wheel”
l M nearest time slots stored in an array — M is a power of two
l Access a list by (time mod M) — a table lookup
l Essentially turned first linked list access into an array access saving time
l Further out times are kept in linked list.  As time is advanced, further out

times are brought into wheel

array

timing wheel

time a

time a+1

time a+3

time a+2

…

time a + M - 1

eventevent event

event

event event

event
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Asides

n Can a gate model be executed several times in a time
step?

n Does the order of execution of the gates in a
combinational circuit matter?
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Summary on gate evaluation

n Timing model
l timing-execution model

- how time is advanced and new values created
l Any gate input or assign righthand-side change causes the model to

be evaluated during the time step
- this is not the case for behavioral models — they have a

different timing model
l Fanout list is static — design never changes

n Gate level modeling
l detailed timing

n Continuous assignment
l abstract

n What if you don’t like these models?
l e.g., inertial delays?
l use behavioral models
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Review Stuff

n Update Events
l A new value appears at some simulated time

n Evaluation Events
l A model is executed (evaluated) at some simulated time

n Event List
l A time-ordered list of events

n Simulation scheduler
l Software program that manages the event list by scheduling update

and evaluation events, tracing fanouts to propagate values, and
manages simulated time
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Behavioral Timing Model

n How does the behavioral model advance time?
l # — delaying a specific amount of time

l@ — delaying until an event occurs  — e.g. @v
- “posedge”, “negedge”, or any change
- this is edge-sensitive behavior
- When the statement is encountered, the value v is sampled.

When v changes in the specified way, execution continues.

l wait — delaying until an event occurs (“wait (f == 0)”)
- this is level sensitive behavior

lWhile one model is waiting for one of the above reasons, other
models execute — time marches on
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Wait

n Wait — waits for a level on a line
l How is this different from an “@” ?

n Semantics
l wait (expression) statement;

- e.g. wait (a == 35) q = q + 4;
l if the expression is FALSE, the process is stopped

- when a becomes 35, it resumes with q = q + 4
l if the expression is TRUE, the process is not stopped

- it continues executing

n Partial comparison to @ and #
l@ and # always “block” the process from continuing
l wait blocks only if the condition is FALSE
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An example of wait

module handshake (ready, dataOut, …)
input ready;
output [7:0] dataOut;
reg [7:0] someValueWeCalculated;

always begin
wait (ready);
dataOut = someValueWeCalculated;
…
wait (~ready)
…

end
endmodule

module handshake (ready, dataOut, …)
input ready;
output [7:0] dataOut;
reg [7:0] someValueWeCalculated;

always begin
wait (ready);
dataOut = someValueWeCalculated;
…
wait (~ready)
…

end
endmodule

ready

Do you always get the value right when ready goes
from 0 to 1?  Isn’t this edge behavior?



86© Don Thomas, 1998, 86

Wait vs. While

n Are these equivalent?
l No: The left example is correct, the right one isn’t — it won’t work
lWait is used to wait for an expression to become TRUE

- the expression eventually becomes TRUE because a variable in
the expression is changed by another process

lWhile is used in the normal programming sense
- in the case shown, if the expression is TRUE, the simulator will

continuously execute the loop.  Another process will never have
the chance to change “in”.  Infinite loop!

- while can’t be used to wait for a change on an input to the
process. Need other variable in loop, or # or @ in loop.

module yes (in, …);
input in;
…
 wait (in == 1);
 …
endmodule

module no (in, …);
input in;
…
 while (in != 1);
 …
endmodule
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Blocking procedural assignments and #

n We’ve seen blocking assignments — they use =
l Options for specifying delay

 #10 a = b + c;
 a = #10 b + c;

l The differences:

Note the action of the second one:
- an intra-assignment time delay
- execution of the always statement is blocked (suspended) in the

middle of the assignment for 10 time units.
- how is this done?

The difference?
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Events — @something

n Action
l when first encountered, sample the expression
l wait for expression to change in the indicated fashion

l This always blocks

n Examples

always @(posedge ck)
q <= d;

always @(hello)
a = b;

always @(hello or goodbye)
a = b;

always begin
yadda = yadda;
@(posedge hello or negedge goodbye)
a = b;
…

end
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Sensitivity Lists

n In the gate level timing model…
lmodel execution was sensitive to any change on any of the inputs at

any time.
l sensitivity list — a list of inputs that a model is sensitive to

- a change on any of them
will cause execution of
the model

l In the gate level timing model,
the lists don’t change.
l Ditto with continuous assign

n In procedural models …
l the sensitivity list changes as

as function of time and
execution

module d_type_FF (q, clock, data);
input clock, data;
output q;

nor #10
a (q, qBar, r);

nor
b (qBar, q, s),
c (s, r, clock, s1),
d (s1, s, data),
e (r, r1, clock),
f (r1, s1, r);

endmodule

Structural
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Fanout Lists

n Outputs of things are connected to inputs of other
things
l No surprise
l The simulator maintains a list of inputs driven by each “output”

n Why?
lWhen the output changes, it’s easy to figure out what other models

need (to be) evaluated

n What’s an “output” in the above sense?

n Because of procedural models …
l Fanout lists change

n Fanout lists <—> Sensitivity lists
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Behavioral Timing Model
n What is the behavioral model sensitive to?
l The behavioral statements execute in sequence (one then the next)
l Therefore, what a behavioral model is sensitive to is context specific

- i.e. it is only sensitive to what it is currently waiting for
- time, edge, level —  (#, @, wait)

l The model is not sensitive to a change on y, or w.

always begin
 @ (negedge clock1) 

q = y;
 @ (negedge clock2)

q = w;
@ (posedge clock1)

/*nothing*/  ;
@ (posedge clock2)

q = 3;
 end

Here, it is only sensitive to clock1Here, it is only sensitive to clock1

Here, it is only sensitive to
clock2.  A posedge on

clock1 will have no effect
when waiting here.

Here, it is only sensitive to
clock2.  A posedge on

clock1 will have no effect
when waiting here.

It is never sensitive to changes
on y or w

It is never sensitive to changes
on y or w
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Scheduling #, @, and Wait
n How are #, @, and wait tied into the event list?
l # delay

- schedule the resumption of the process — put it in the event queue
delay units into the future.  Essentially an evaluation event
scheduled in the future

l@ change
- when suspended for an @v, the behavioral model is put on the

fanout list of the variable v.  i.e., the behavioral model is now
sensitive to v.

- When an update event for v occurs, (e.g. posedge), then the
behavioral model is scheduled to resume at the current time — an
evaluation event.

lWait (exp)
- if exp is TRUE, don’t stop
- if exp is FALSE, then the behavioral model is put on the fanout list(s)

of the variable(s) in exp.  (it’s now sensitive to the variable(s))
- When there is an update event for any of the variables in exp , exp is

evaluated.  If exp is TRUE, resume executing in the current time
(schedule an eval event), else go back to sleep
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Non-blocking assignments (<=)

n Two important aspects to these
l an intra-assignment time delay doesn’t stop them (they’re non-

blocking)
l they implement a concurrent assignment

n Example — intra-assignment time delay
l non-blocking assignments use “<=”
 a <= #10 b + c;

n What happens?
l b + c is calculated
l an update event for a is scheduled #10 in future
l execution of the always continues in the current time

- the execution of the always is not blocked by the delay
l there is also a subtle difference in how a is updated …

- we’ll get to it, but first, an example
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Intra-Assignment Non-blocking Example

n What’s the difference?

module procAnd1 (a1, b, c);
input b, c;
output a1;

always @(b or c)
a1 = #5 b & c;

endmodule

module procAnd1 (a1, b, c);
input b, c;
output a1;

always @(b or c)
a1 = #5 b & c;

endmodule

module procAnd2 (a2, b, c);
input b, c;
output a2;

always @(b or c)
a2 <= #5 b & c;

endmodule

module procAnd2 (a2, b, c);
input b, c;
output a2;

always @(b or c)
a2 <= #5 b & c;

endmodule
Which is similar to an AND primitive?

b

assume c = 1

a1

a2

5

b
c
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Non-Blocking Concurrent Assignment

n Concurrent Assignment — primary use of <=
l The assignment is “guarded” by an edge
l All assignments guarded by the edge happen concurrently

- All right-hand sides are evaluated before any left-hand sides are
updated

- Like this

module fsm (Q1, Q0, in, clock);
output Q1, Q0;
input clock, in;
reg Q1, Q0;

always @(posedge clock) begin
Q1 <= in & Q0;
Q0 <= in | Q1;

end
endmodule

QD

QD

in

Q1

Q0
Q1

Q0

clock
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Edges in time — concurrent assignment

QD

QD

in

Q1

Q0
Q1

Q0

clock

Values at the
clock edge.

(At t -)

Values at the
clock edge.

(At t -)

Values after the clock edge (t+)

 — calculated in response to
the clock edge, using values at

the clock edge

Values after the clock edge (t+)

 — calculated in response to
the clock edge, using values at

the clock edge

module fsm (Q1, Q0, in, clock);
output Q1, Q0;
input clock, in;
reg Q1, Q0;

always @(posedge clock) begin
Q1 <= in & Q0;
Q0 <= in | Q1;

end
endmodule
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Alternates — not all equivalent
module fsm (Q1, Q0, in, clock);

output Q1, Q0;
input clock, in;
reg Q1, Q0;

always @(posedge clock) begin
Q1 <= in & Q0;
Q0 <= in | Q1;

end
endmodule

module fsm (Q1, Q0, in, clock);
output Q1, Q0;
input clock, in;
reg Q1, Q0;

always @(posedge clock) begin
Q1 = in & Q0;
Q0 = in | Q1;

end
endmodule

A very different animal?module fsm (Q1, Q0, in, clock);
output Q1, Q0;
input clock, in;
reg Q1, Q0;

always @(posedge clock) begin
Q0 <= in | Q1;
Q1 <= in & Q0;

end
endmodule

The same?
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How about these?
module fsm1 (Q1, Q0, in, clock);

output Q1;
input clock, in, Q0;
reg Q1;

always @(posedge clock) begin
Q1 <= in & Q0;

end
endmodule

module fsm0 (Q1, Q0, in, clock);
output Q0;
input clock, in, Q1;
reg Q0;

always @(posedge clock) begin
 Q0 <= in | Q1;

end
endmodule

Will these work?

module fsm1 (Q1, Q0, in, clock);
output Q1;
input clock, in, Q0;
reg Q1;

always @(posedge clock) begin
Q1 = in & Q0;

end
endmodule

module fsm0 (Q1, Q0, in, clock);
output Q0;
input clock, in, Q1;
reg Q0;

always @(posedge clock) begin
 Q0 = in | Q1;

end
endmodule

These?
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The Important Aspect …

n Non-Blocking Concurrent transfers
l Across the whole design,

all right-hand sides are evaluated

before any left-hand sides are updated.

l Thus, the order of r-hs’s evaluated and l-hs’s updated can be
arbitrary (but separate)

n This allows us to …
l handle concurrent specification in major systems
l reduce the complexity of our descriptions
l attach lots of actions to one event — the clock
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A State Change

n Find all of your “state” variables
l Not just FSM state, but registers in a datapath too
l They’re probably all keyed to an edge of a clock
l Use <= to assign to them at the edge
l You’re guaranteed they’ll all be sampled before any of them are

updated.
l A check: in many cases, the only #delay operator you need is in the

clock (for functional specification)

Clock event

a

b

c

Clock event
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Event List: We told a fib

n This is what we told you before:

n Issues
l In a concurrent language, there are some very dirty issues regarding

the “arbitrary order” of execution.
l In software, such issues are handled by synchronization primitives

- Some of you have probably seen semaphores in the OS or real-
time (embedded systems) course

- They only allow other concurrent parts of a system to see full
state changes, not partial.  State changes appear “atomic”

- These provide a very clean way to enforce order (actually,
mutual exclusion) within “zero time”

time a

time b

eventevent event

event

We lied!
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Differences in the Event List Scheduling

n Previous picture of doubly linked event list

n More detailed view
l Three lists per time

time a

time b

eventevent event

event

time a eventevent

event

event

Regular events, gate outputs,
continuous assign outputs,

updates of blocking procedural
assignments

Regular events, gate outputs,
continuous assign outputs,

updates of blocking procedural
assignments

Non-blocking
procedural

updates

Non-blocking
procedural

updates

Monitor
events

Monitor
events
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What gets scheduled when/where

n Now
lWhile there are regular events:

- “retrieve all regular events for current time and execute in arb.
order”

- Note: These may produce more regular events for current time
l Retrieve all non-blocking events for the current time and execute

- these may produce more regular events for current time, if so
lWhen no more events, do monitor events. No new events produced

time a eventevent

event

event Non-blocking
procedural

updates

Non-blocking
procedural

updates
Monitor
events

Monitor
events

Regular events, gate outputs,
continuous assign outputs,

updates of blocking procedural
assignments

Regular events, gate outputs,
continuous assign outputs,

updates of blocking procedural
assignments
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A picture of the event list

Regular 
events

Non-blocking
events

Future 
Time

Monitors

Current time

=
<=

=

<= <==

What happens?

a <= b + c

What happens?

a <= b + c

$monitor (… q)
q
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Follow the Execution
module fsm (Q1, Q0, in, clock);

output Q1, Q0;
input clock, in;
reg Q1, Q0;

always @(posedge clock) begin
Q1 <= in & Q0;
Q0 <= in | Q1;

end
endmodule

always #10 clock = ~clock;

clock becomes 0

time 20

re
g

u
la

r
n

o
n

-B

time 30 time 40
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Follow the Execution
module dff (Q, D, clock);

output Q;
input clock, D;
reg Q;

always @(posedge clock)
Q <= D;

always #10 clock = ~clock;
endmodule

clock becomes 0

time 20

re
g

u
la

r
n

o
n

-B

time 30 time 40

QD

QD

in

Q1

Q0
Q1

Q0

clock

#3

#3
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More Scheduling
re

g
u

la
r

n
o

n
-B

S

A

B

Z

previous values:
A = 1
B = 0
S = 0

new values at
time 10:

A = 0
B = 1
S = 1

previous values:
A = 1
B = 0
S = 0

new values at
time 10:

A = 0
B = 1
S = 1

C

D

E

U: A=0
B=1
S=1

10
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More Scheduling
re

g
u

la
r

n
o

n
-B

previous values: xprevious values: x

0

and (c, a, b);

always begin
a = 0;
#0 q = 1;
…
#10 …

initial
b = 1;
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Other strange things you can do

n A 4-stage pipelined multiplier
l every clock edge, the a and b inputs are read and their product is

scheduled to appear three clock periods later

module pipeMult (product, a, b, ck);
input ck;
input [9:0] a, b;
output [19:0] product;
reg [19:0] product;

always
@(posedge ck)

product <= repeat (3) @(posedge ck) a * b;
endmodule

module pipeMult (product, a, b, ck);
input ck;
input [9:0] a, b;
output [19:0] product;
reg [19:0] product;

always
@(posedge ck)

product <= repeat (3) @(posedge ck) a * b;
endmodule



110© Don Thomas, 1998, 110

Some ugly ramifications

n You need to be careful when mixing blocking and non-
blocking assignments
l blocking — you can read it like regular C language assignments.

The value of the variable on the left-hand side can be used in the
next statement on the right-hand side
l non-blocking — the assignment is scheduled to appear at a later

time.  The value on the left-hand side is not available in the next
statement.

l General rule: for “state” use “<=”.  For intermediate values and
combinational elements, use “=”

a = 3
b = 4
a <= 3 + 4
c = a

a = 3
b = 4
a <= 3 + 4
c = a

What value is assigned to c?      who cares

The Verilog Police say:
“careful on how you mix

these!”
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Closer Look at the Scheduler
while (there are events in the event list) {

if (there are no events for the current time
advance currentTime to the next event time

if (there are no regular events for the current time)
 if (there are non-blocking assignment update events)

turn these into regular events for the current time
else 

if (there are any monitor events)
turn these into regular events for the current time

Unschedule (remove) all the regular events scheduled for currentTime
For each of these events, in arbitrary order {

if (this is an update event) {
Update the value specified
Evaluate gates on the fanout of this value and Schedule update
events for gate outputs that change
Schedule evaluation events for behaviors waiting for this value

}
else { // it’s an evaluation event

Evaluate the model
Schedule any update events resulting from the evaluation

}
}

}

Advance timeAdvance time

Do blocking,
non-blocking,
then monitors

Do blocking,
non-blocking,
then monitors

Mostly
Procedural

evals

Mostly
Procedural

evals

Mostly
Update and
gate evals

Mostly
Update and
gate evals
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Gate-Level Modeling

n Need to model the gate’s:
l function
l delay

n Function
l Generally, HDLs have built-in gate-level primitives

- Verilog has NAND, NOR, AND, OR, XOR, XNOR, BUF, NOT, and
some others

l The gates operate on input values producing an output value
- typical Verilog gate instantiation is:

 and #delay  name (out, in1, in2, in3, …)
- multi-level logic used in some models to represent:

l values, edges, unknowns, high impedances, …

optional “many”
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Logic Values

n Verilog Logic Values
l 1, 0, x (unknown), z (high impedance)
l x — one of: 1, 0, z, or in the state of change
l z — the high impedance output of a tri-state gate.  Generally

treated as an x on an input.

n Off-the-wall, but important, values (a partial list)
l rising edge — posedge

- 0->x;  x->1;  0->1
l falling edge — negedge

- 1->x;  x->0;  1->0
l switch-transistor values

- strong 1; weak 1; …

n Logic with multi-level logic values
l note: z treated as an x on input
l some languages allow you to define a function based on multi-level

logic values (Verilog does)

 Nand 0 1 x z
 0 1 1 1 1
 1 1 0 x x
 x 1 x x x
 z 1 x x x
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Delay Models

n Delay models for gates: views and definitions
l Basic view:  the function and delay are separate

- The function is handled by model execution, the delay by the
simulator scheduler

a
b c a nand b delay

a

b c

An evaluation event
causes this value to
be calculated…

An evaluation event
causes this value to
be calculated…

… then it’s scheduled
as an update event

and propagated here.

… then it’s scheduled
as an update event

and propagated here.
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Kinds of delays

n Definitions
l Zero delay models — functional testing

- there’s no delay, not cool for circuits with feedback!
l Unit delay models — all gates have delay 1.  OK for feedback
l Transport delay — input to output delay
l Inertial delay — how long must an input spike be to be seen?

- in Verilog, inertial == transport

a
b c

τ — transport delay

a
b c

a
b c

Inertial delay — too small, no output change
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Delay Models

1

0 x

z

primitive
gate

instantiation

rising
delay
0->1
0->x
x->1
z->1

falling
delay
1->0
1->x
x->0
z->0

delay to z
(tristate

gates only)
n nbar

n Other factors
l Delay can be a function of output transition
l Need a number for each of the

arrowheads

n Verilog example

 not  # (3, 5, 7)  (nbar, n);
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Delay Models

n Unknown Delays — different simulators do different
things
l d = randomize (min, max, distribution)

- delay is determined per gate at simulator startup time, same
time used for gate throughout

- this might model TTL chips, but not gates on an IC
l Why?

l d = (min, typical, max)
- delay to use is determined by simulator command at simulator

startup time (i.e. one is selected)
- for Verilog, each of the three timing values can be replaced by a

triple (min:typ:max)

 not  # (2:3:4, 4:5:6, 7:8:9)  (nbar, n)
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Overridden Delays

n Delays Overridden
l Use “actual” delays to override specified model delays
l Most importantly, delay due to loading and path lengths is made

more accurate
- generally, this adds to the wire delay accuracy

RTL gates
place
and

route

“actual”
delays

logic
synthesis

Simulator

Initial
delays

More accurate,
overriding values

pli
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Delays on Wires

n How do you drive wires?
l gate outputs can drive wires

- gate outputs implicitely define wires
l wires can also be defined — with or without delay

 wire <size> <delay> name;

 wire #5 LM;
 and #6 a (LM, L, M);

not b (MA, MB, LM);
- The delay on a wire is added to any delay in the gate(s) that

drive the wire

Gate b sees an input
change 11 time units after a

change on L or M

L
M bLMa
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Model Evaluation

n Gate evaluation
l the design is made up of primitive gates

and behaviors
l we’re only considering primitive gates

now

n Approach #1
l Performing (A nand B nand …) is slow

- especially in multi-valued logic
l Use table lookup — takes up memory, but

it’s fast
- Encode 0 as 00, 1 as 01, x as 10,

z as 11

Truth
Table

{A,B}
result

0000 01
0001 01
0010 01
0011 01
0100 01
0101 00
0110 10
0111 10
1000 01
1001 10
1010 10
1011 10
1100 01
1101 10
1110 10
1111 10

A B Output

Truth Table
for Nand
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Model Evaluation

n Oh that was fun, let’s do more of it
l Variation on table lookup — “Zoom table”

- the table includes all primitive functions
as well as variables

l Essentially this is the “programming pearl”
that says:

- If it takes too much time to calculate
something, precalculate it, store the
results in a table, and look up the answer

Zoom
Truth
Table{func,A,B}

result

0_0000 01
0_0001 01
0_0010 01
0_0011 01
0_0100 01
0_0101 00
0_0110  10
0_0111 10
0_1000 01
0_1001 10
0_1010 10
0_1011 10
0_1100 01
0_1101 10
0_1110 10
0_1111 10
1_0000 00
1_0001 00
1_0010 00
1_0011 00
1_0100 00
1_0101 01
1_0110  10
1_0111 10
1_1000 00
1_1001 10
1_1010 10
1_1011 10
1_1100 00
1_1101 10
1_1110 10
1_1111 10

Truth Table
for Nand and

And

Nand

And
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Model Evaluation

n Approach #2 — Input counting method
l input width independent (as compared to Zoom tables)
l represents functions by controlling and inversion values

- output is c ⊕ i
l Evaluation function:

x_val = FALSE
for every input v of G {
 if (v == c) return (c ⊕ i)
 if (v == x) x_val = TRUE
}
if (x_val) return x
return (c’ ⊕ i)

l requires scanning of the inputs

If any input is
controlling, you
know the output

If any input is
controlling, you
know the output
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Simulation: Model Evaluation

n Approach #3: Input counting
l An update event keeps count of various features

- when 1 -> 0 on AND gate, increment c_count
l (the number of controlling inputs)

- when 0 -> x on AND gate, decrement c_count, increment
x_count

l an evaluation event becomes
if (c_count > 0) return c ⊕ i
if (x_count > 0) return x
return c’ ⊕ i

l Can you make this work with XORs?
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Behavioral Models

n Interpreted
l Compile to an intermediate representation
l To execute, interpret it — slow

n Code Generation
l Compile behavioral Verilog directly to assembly code — treat it as a

programming language
l Long compile times, but fast execution

- Still slower than regular C — why?
l Not limited to behavioral models

lWho said computer engineers don’t need to know how a compiler
works!
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Tying behavior and gate models
together

n Real designs mix behavior and gate models

module beh (i1, i2, o1, clk);
input [ ] i1, i2, clk;
output [ ] o1;
reg [ ] a, b, o1;

always
    begin
 @ (posedge clk);
 a = b + i1;
 o1 = a + i2;
…

module str (in1, out1, out2);
input [ ] in1;
output [ ] out1, out2;

 assign #10 out1 = in1 | a;

 nand #(2, 5) (out2, in1, b);
 nand #(6, 3) (xxx, in1, b);
 …

module putTogether ();
wire [ ] w1, w2, w3, w4;

 beh  inst1 (w1, w2, w3, w4);
 str duh (w3, w2, w1);
endmodule
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Tying behavior and gate models
together

n An alternate version
lmodules may contain  mixture of behavior and gate models

module behstr (clk);
reg [ ] a, b, o1in1;
input clk;

 wire [ ] #10  out1i2 = o1in1 | a;

 nand #(2, 5) (out2in1[0], o1in1[0], b[0]);
 nand #(2, 5) (out2in1[1], o1in1[1], b[1]);

 always 
   begin
 @ (posedge clk);
 a =  b + out2in1;
 o1in1 =  a + out1i2;
…

note that the assign turned
into a wire declaration with

an assign.

changes will be
propagated  to a and o1in1
after the behavioral model

stops again at the “@”
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Names of things

n Thus far, we’ve seen names of…
l registers, variables, inputs, outputs, instances, integers
l Their scope is the begin-end block within which they were defined

- module — endmodule
- task — endtask
- function — endfunction
- begin:name — end

l… nothing else within that scope may already have that name

n Types of references
l Forward referenced — Identifiers for modules, tasks, functions, and

named begin-end blocks may be used before being defined
l Not Forward referenced — must be defined before use

- wires and registers
l Hierarchical references — named through the instantiation hierarchy

- “a.b” references identifier b in namespace a
- forward referenced
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Identifiers

n Forward referenced
l Identifiers of modules, tasks, functions, named-blocks
l Hierarchical search tree defined by module instantiation

- Identifiers within each higher scope are known
l After all instantiations are known, search upward for the first

identifier
- a.b.c.d
- When found go down through the rest of the name

n Non-Forward referenced
l Identifiers for registers and wires (non-hierarchical)
l Hierarchical search tree defined by nested procedural blocks

- rooted in module
- Search doesn’t cross module instantiation boundaries

n Hierarchical — registers and wires
l These are forward referenced — see above
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Scope of functions and tasks

n Where defined
l functions and tasks are defined within modules

n Scope
l As with other names, the scope of the functions and tasks is the

begin-end block (module-endmodule) within which they are defined
l They can also be accessed hierarchically

- define “global” functions and tasks in the “top” module
- they’ll be accessible from any (recursively) instantiated module.
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A few examples

module a (…);
reg e;

 task b;
 reg c;
 begin : d
 reg e;

e = 1;
a.e = 0;

 end
 endtask
 always
 begin : f
 reg g;
 a.b.d.e = 2;

g = q.a.b.d.e;
e = 3;

 end
endmodule

e’s hierarchical name is  …a.b.d.e

g’s hierarchical name is  …a.f.g

named begin-end block

some ugliness here…

Chapter 2.6

assumes a is instantiated in q


