

Bryan Dickman, ARM	ComplexityDesign for verification	 Scalability Meeting our need for cycles 	Completeness How do we know when we are done?
Olivier Haller, ST	 Scalability Is exhaustive RTL simulation scalable? Data management 	Complexity Nobody understands the full system 	 Productivity Do more with same budget Faster with derivatives
Hans Lunden, Ericsson	TLM in verification Improved TTM 	VIP Improved quality Make or buy? 	Design for verification • Quality and TTM
Clemens Muller, Infineon	 Complexity Mastering the verif complexity 	Debug Automation • Managing all the data	Requirements driven verification

Bryan Dickman, ARM	ComplexityDesign for verification	 Scalability Meeting our need for cycles 	Completeness How do we know when we are done?
Olivier Haller, ST	 Scalability Is exhaustive RTL simulation scalable? Data management 	Complexity • Nobody understands the full system	 Productivity Do more with same budget Faster with derivatives
Hans Lunden, Ericsson	TLM in verification Improved TTM 	VIPImproved qualityMake or buy?	Design for verification • Quality and TTM
Clemens Muller, Infineon	 Mastering the verif complexity 	Debug Automation • Managing all the data	Requirements driven verification

• **Top1**: Mastering Verification Complexity

- Continuous increase in number of IP's and embedded processors
 - 2006: 30-40 IP's, 1 CPU
 - 2011: 80+ IP's, 6+ CPU's
 - 2016: 120+ IP's, 20 CPU's ?
- The more IP's the higher the risk of late spec & implementation changes
- Driving towards true Hw/Sw Co-Verification
- Reuse of verification environments / stimulus from IPlevel into big multi-CPU SoC environments

Bryan Dickman, ARM	ComplexityDesign for verification	 Scalability Meeting our need for cycles 	Completeness How do we know when we are done?
Olivier Haller, ST	 Scalability Is exhaustive RTL simulation scalable? Data management 	 Complexity Nobody understands the full system 	 Productivity Do more with same budget Faster with derivatives
Hans Lunden, Ericsson	TLM in verification Improved TTM 	VIPImproved qualityMake or buy?	Design for verification • Quality and TTM
Clemens Muller, Infineon	 Complexity Mastering the verif complexity 	Debug Automation • Managing all the data	Requirements driven verification

2. Scalability

- Constrained-random simulation has been proven as a good bug-hunting flow, but...
 - How much simulation will be enough for a 10 GHz CPU?
 - How many cycles to verify 2 weeks at target speed of 1GHz?
 - Answer: 0.6 x 10¹⁵

	Simulation (KHz)	Emulation (1 MHz)	FPGA (10 MHz)	Si (1 GHz)
Target cycles 10 ¹⁵	1,000,000 sim slots	1000 emulation slots	100 FPGA slots	1 chip
Achievable cycles	10 ¹¹	10 ¹²	10 ¹⁴	10 ¹⁵

- How will we scale simulation, emulation, FPGA to next gen of CPUs?
- What are the alternatives?

Geoff Barrett,	Scalability	Verification	EDA Tool
Broadcom	At chip level	resources	Maturity
		Too much on	
		diversions	
Andre	Requirements	Scalability	Mixed Signal
Winkelmann,	Tracing	Ease of verifying	• The boundaries are
Wolfson		derivatives	fading
Andrew Bond,	H/SW Co-	Performance	Resources
NVidia	verification	Verif	 Shortage of verif
	 SW engineers avail 	Everybody finds	engineers
	to write real SW	own solution	
Steve Holloway,	Verification	Achieving Reuse	Mixed Signal
Dialog	Completion		MDV for AMS
	 Increasingly hard 		
Tim Blackmore,	Complexity	Change	Better use of sim
Infineon	Reducing verif	Making verif more	cycles
	complexity	agile	• How to improve use of cycles?

Geoff Barrett,	Scalability	Verification	EDA Tool
Broadcom	At chip level	resources	Maturity
		 Too much on diversions 	
Andre	Requirements	Scalability	Mixed Signal
Winkelmann, Wolfson	Tracing	 Ease of verifying derivatives 	• The boundaries are fading
Andrew Bond,	H/SW Co-	Performance	Resources
NVidia	verification	Verif	Shortage of verif
	 SW engineers avail to write real SW 	 Everybody finds own solution 	engineers
Steve Holloway,	Verification	Achieving Reuse	Mixed Signal
Dialog	Completion		MDV for AMS
	 Increasingly hard 		
Tim Blackmore,	Complexity	Change	Better use of sim
Infineon	 Reducing verif complexity 	 Making verif more agile 	cyclesHow to improve use of cycles?

- Verification engineers are always in demand
- Even with some industrywide unification of methodologies finding good engineers doesn't seem to be getting easier
- With more design re-use and verification outsourcing flexible engineers seem harder to find

Geoff Barrett,	Scalability	Verification	EDA Tool
Broadcom	At chip level	resourcesToo much on	Maturity
		diversions	
Andre	Requirements	Scalability	Mixed Signal
Winkelmann,	Tracing	Ease of verifying	• The boundaries are
Wolfson		derivatives	fading
Andrew Bond,	H/SW Co-	Performance	Resources
NVidia	verification	Verif	Shortage of verif
	• SW engineers avail	Everybody finds	engineers
	to write real SW	own solution	
Steve Holloway,	Verification	Achieving Reuse	Mixed Signal
Dialog	Completion		MDV for AMS
	 Increasingly hard 		
Tim Blackmore,	Complexity	Change	Better use of sim
Infineon	Reducing verif	Making verif more	cycles
	complexity	agile	How to improve use of cycles?

TVS

MS verification made easy

- How do analogue and digital engineers work together?
- Multitude of skills required

Boundary is fading

- Analogue verification incorporates digital techniques
- Digital verification incorporates analogue features
- Variety of modelling techniques and abstractions
- Power aware mixed signal verification
- UVM-AMS adoption

France 2012

Laurent Arditi, ARM	 Bug Avoidance Functionally correct designs? 	Bug Hunting Improved hunting & completion 	 Bug Absence Proving absence of bugs
Thomas Goust,	Design	IC to chipset	Leading-Edge
ST-E	Complexity	Multiple ICs	Tech
			Outsourcing
Jerome Bombal,	HW-SW Co-	Fast platform	Real-world
ті	Verification	prototyping	functional
			coverage
Christophe	Verification	System	Verification Mgt
Chevallaz, ST	Reuse	Verification	Data mgt
	 Lots of opportunity 		

France 2012

Laurent Arditi, ARM	 Bug Avoidance Functionally correct designs? 	Bug Hunting Improved hunting & completion 	 Bug Absence Proving absence of bugs
Thomas Goust,	Design	IC to chipset	Leading-Edge
ST-E	Complexity	Multiple ICs	Tech
			Outsourcing
Jerome Bombal,	HW-SW Co-	Fast platform	Real-world
ті	Verification	prototyping	functional
			coverage
Christophe	Verification	System	Verification Mgt
Chevallaz, ST	Reuse	Verification	Data mgt
	 Lots of opportunity 		

The challenge to manage huge amount of verification data

 Amount of verification data make more complex the risk decision of verification closure

Some Directions partially or to be implemented

- Refine the verification Metrics
- Merge the metrics (SOC / IPS various source)
- Usage of MySQL data Base
- Leverage on Business Intelligence tool to support Verification Closure
- Define metrics on non-functional properties (performance, power, energy, temperature, ...)

Martin Ruhwandl, Lantiq	Multi-Language Verif environments	DebuggingMore automation	3rd Party IP integration • And VIP
Michael Rohleder, Freescale	Synthesis/Timing Constraints	Holistic Coverage • Combining views	Disconnected Views • Functional, timing, power, SW
Wolfgang Ecker, Infineon	Requirements driven verification	TopDown/ BottomUp • Verif at right level	Heterogeneous Systems • Digital, Analog, FW

Martin Ruhwandl, Lantiq	Multi-Language Verif environments	DebuggingMore automation	3rd Party IP integration • And VIP
Michael Rohleder, Freescale	Synthesis/Timing Constraints	Holistic Coverage • Combining views	Disconnected Views • Functional, timing, power, SW
Wolfgang Ecker, Infineon	Requirements driven verification	TopDown/ BottomUp • Verif at right level	Heterogeneous Systems • Digital, Analog, FW

Wolfgang Ecker, Infineon

TVS

- Required by ISO 26262
 - "Road vehicles Functional safety" and other similiar standards

Validate the verification

- Have the right things been verified
- Avoid that requirements haven't been verified and things have been verified, that haven't been required
- Reuse implementation of verification goal
- Keep track with change requests
- Enable impact analysis

Sainath	AMS	Dynamic Power	Timing
Karlapalem, NXP	Verification	Verif	Verification
Udaya Kumar Napa, MaxLinear	Coverage Closure	Integrating Levels of Verif	Requirements driven verification
Desikan	Exploiting	System level	Verif Schedule
Srinivasan, ARM	Formal	coherency	Predictability

Analysis

Complexity	6
Integrating Languages, Views and Techniques	6
Completeness	5
Productivity	5
Scalability	4
Reuse	4
Requirements Driven Verif	4
System	4
Mixed Signal	3
Debug	2
HW/SW	2
Demonstrating Bug Absence	2
Synthesis/Timing Constraints	2
Performance	1
Resources	1
Change	1
Design for Verif	1
Leading Edge Technology	1
Verification Data Mgt	1
Dynamic Power	1
Predictability	1