
w
w

w
.ie

e.
or

g/
el

ec
tr

on
ic

sm
ag

az
in

e

10 IEE Electronics Systems and Software | December/January 2004/05

B
uilding reusable devices for verification is
becoming a must in order to reduce the
verification overhead for designs. However,
it is no longer enough to simply build a
device which can only attach to a Design
Under Test (DUT) or bus and operate in a

single way. Instead, Verification Components (VCs) are
becoming more common. Such devices provide a reusable
way of testing devices with a common functionality or
common protocol.

However, it is also becoming necessary to be able to reuse
what have traditionally been block-level verification devices
at the system level. At Infineon Technologies, we have built
reusable verification components in the language ‘e’ that
exploit random testing techniques. Incorporated into these
devices is functional coverage, so they are compatible with
coverage-driven verification methodologies. In addition, the
eVCs have to be switchable, so that they can be replaced with
a Hardware Description Language (HDL) equivalent as and
when desired.

The techniques described were used on an eVC set
written for a new internal protocol which features a hub and
spoke system with point-to-point connections. A diagram of
the system is shown in Fig 1.

Each of the components in the diagram grey must have
an eVC model, and each must be swappable with a HDL
equivalent. Thus the hub might be in VHDL and attached to
masters and slaves written in e, or the entire environment
might be written in e.

Normally, eVCs are written to be reusable in themselves
but, if more than one protocol has to be supported, it is
useful to make the verification components modular, so that
the internal blocks of the verification component are
themselves reusable.

We split our eVC Masters into three logical blocks, based
on the logical HDL equivalent. An example of this is shown
in Fig 2. This split allowed us to develop components that
can be reused across different eVCs. Thus we envisaged a
master component as consisting of a scoreboard, a

REUSABLE VERIFICATION
COMPONENTS PROVIDE A WAY OF
STREAMLINING THE PROCESS OF

CHECKING NOT JUST LOGIC BLOCKS
BUT PROTOCOL STACKS AND SYSTEM

DESIGNS. USED IN COMBINATION
WITH OTHER TECHNIQUES, THEY CAN

PROVIDE A WAY OF STRESSING THE
SYSTEM TO REVEAL BUGS OTHER
APPROACHES WOULD NOT FIND.

Stresstests

➔

By Darren Galpin

Hubs: arbitrates and routesHubs: arbitrates and routes

Master Slave Master

Master Slave Master

Generator DriverScore-
board

Application
Core

Bus
Interface

Unit

Memory
Unit

Fig 1: The protocol and subsystems to be modelled

Fig 2: An eVC Master and its HDL equivalent

010-015_ESS_DecJan0405_EJ 11/19/04 6:25 PM Page 2

Verification

IEE Electronics Systems and Software | December/January 2004/05 11

010-015_ESS_DecJan0405_EJ 11/19/04 6:25 PM Page 3

w
w

w
.ie

e.
or

g/
el

ec
tr

on
ic

sm
ag

az
in

e

generator that reads in constraints and a bus driver. The
constraints that the generator reads in are protocol specific,
but the generator is otherwise reusable across components.
It is only the bus driver which is protocol specific.

An eVC slave is constructed in exactly the same way. It
too consists of three parts: a bus sampling unit, a response
generator, and a RAM model, which in our case consisted of
a keyed list which is sorted by address. Again, only the bus
sampling unit is protocol specific. The response generator
reads in protocol specific constraints, but is otherwise
reusable, as is the RAM. At Infineon, we refer to this
approach as ‘socketised IP’. However, the hub was a
completely bespoke device, as it was only required to route
and arbitrate.

The point-to-point nature of the system meant that a
single protocol checker was inappropriate, so protocol
checking was moved into the master, slave and hub as

appropriate. It is at this point that the verification of the
system starts, before any Register Transfer Level (RTL) code
has even been run.

It is a fact of life that protocol specifications are rarely
complete and often contain holes. Finding the holes when
performing system testing is too late and costly, so moving
the discovery upfront saves time and effort. The development
of the eVC can be considered as a prototyping of the system
– it allows you to try out the protocol and explore it before
expensive system simulation is performed.

The construction of the protocol checking components
can only be performed through a thorough review of the
protocol specification. As the ultimate aim during the
construction of the eVC is to create a golden reference to
which everything will be verified against, it is very
important to get this right. It is also the point at which you
are verifying the protocol specification itself. If your
verification components are fully random, then you should
be able to exercise the full protocol if you run your eVC
master against the eVC slave. In this way you can explore
the full protocol space for deadlocks, livelocks and
inconsistencies.

The protocol checks themselves can be performed in two
ways. The first method is to code from the specification. This
is both the simplest and hardest method: you read the
specification and try to capture what happens at each stage
as a transaction progresses. This involves checks for the
default values on the signals, error conditions, checking that
signals have or have not been asserted at the correct point,
checking signal length and so on.

The second method is to reuse your formal environment.
Random and formal verification environments are
fundamentally the same. In each you have a set of
assumptions to describe the environment in which it will
operate, and a set of constraints to describe the legal
behaviour. So, you can reuse the existing formal
environment within the eVC. It is common to use sets of
assertions to capture the behaviour of an interface, or a set
of properties. Assertions can usually be translated directly
into temporal expressions within the eVC.

Properties can be more complex, but typically only
involve translating a finite state machine, which is used to
keep track of where in the transaction space the ongoing
transaction is, creating a set of Boolean expressions and a
check. This assumes that you already have a complete
formal description, though.

Whichever approach is used, a coverage point should be
associated with each of the checks. When simulating, if no
failures are observed, the user does not actually know what
has been executed – she is only aware that nothing has been
observed to fail. The use of coverage on the checks increases
the observability of the verification. The user will be able to
observe after testing which checks have been triggered and,

It is a fact of life that
protocol specifications are
rarely complete and often
contain holes

‘‘
’’

12 IEE Electronics Systems and Software | December/January 2004/05

010-015_ESS_DecJan0405_EJ 11/19/04 6:25 PM Page 4

Verification

IEE Electronics Systems and Software | December/January 2004/05 13

more importantly, which ones have not. Those which have
not been covered indicate a hole in the testing, and a part of
the protocol space that needs to be explored.

For the eVCs, a functional-coverage programme was
constructed for both the Slave and the Master, on a per-
instance basis, so that we could keep track of what we drove
into our DUT, and what the DUT drove out. The functional
coverage is constructed so that all facets of a transaction are
recorded – the opcode, read/write type, acknowledge code
and number of idles. From this, transition and cross-
coverage can be performed.

Transition coverage is used to record what preceded a
given transaction, so can be used to ensure, for example, that
all opcode-pair combinations have been driven. Cross-
coverage is used to combine, for instance, opcode coverage
with acknowledge coverage, or the transition coverage for
opcodes with read/write type coverage. In this way we can
ensure that as much of the entire protocol space as possible
has been explored.

SYSTEM TEST BENCH
This type of functional coverage is different to that used for
protocol coverage. If the latter is fully achieved, it only shows
that we have exercised all of the different conditions, and we
have not asserted signals at the wrong time. If all of the
cross-coverage points are achieved, assuming we cross-cover
all of the measured points, then we are sure that we have
covered all possible bus occurrences, with the caveat that the
bus pipeline depth is only two stages.

We now have the infrastructure in place to perform the
block-level verification of components such as bus bridges,
interface components and other, similar, devices and can
now move to the system level. However, system testbenches
are traditionally much more complex, and cannot use
random data in all cases. For example, processors can only
execute instructions that they actually understand. How can
we reuse our verification IP at the system level?

The system testbench we used was for the TriCore-2 32bit,
multithreaded embedded processor. For this, assembler-level
tests are typically compiled into a Motorola S-record file,
which are then loaded into on-system memories. Various
peripherals are then located around the system.

The aim here is to enhance our verification of the
processor using the newly developed eVC IP. It needs to be
complementary to what already exists, so that all existing
tests can be run without modification, and needs to be
compatible with the processor. How could do we do this? We
achieved this by extending the slave so that the processor
could boot from it. This required the slave to behave like a
boot ROM, and required the code to be preloaded before the
test is run. At the beginning of system tests, the eVC Slave
architecture had no facility for this.

We achieved the result by extending the Slave utilising

our random environments language. When the random tool
creates its environment, it runs a pre-generate method to set
itself up before the test is run. By extending this method, we
can force the slave to execute something before the test is
run. In this specific case, we created a Perl script which
processes the Motorola S-Record file into a list of addresses
and data which can then be read straight into the slave. The
extended method runs the script, and imports the resulting
file. Thus the Slave becomes a boot ROM.

This is all very well, but we have not improved the
testability beyond adding the potential for protocol checking
during booting – although, admittedly, we can randomly
vary the wait-states inserted between transaction responses.
What else could we do? To generate interrupts, traps and
other system exceptions, we would normally have to either
cause a system error, or somehow force one of the system
controllers to issue the exception. This can be difficult,
especially as the exception has to propagate across the
system. It would be far more flexible if these exceptions
could be driven directly into the processor.

To aid this type of testing, four e-based ‘pinwagglers’
were created. These small pieces of e-code were used to drive
the following: idle, interrupt, system trap and suspend. ➔

The use of coverage on the checks
increases the observability of the
verification

‘‘
’’

010-015_ESS_DecJan0405_EJ 11/19/04 6:25 PM Page 5

w
w

w
.ie

e.
or

g/
el

ec
tr

on
ic

sm
ag

az
in

e

14 IEE Electronics Systems and Software | December/January 2004/05

The code sits in parallel to the eVC code, but also exploits its
existence. They sit on top of the existing system connections,
and force the processor inputs when they wish to drive.

In order to simplify the code, these units were written to
drive the same interrupt value and trap value each time.
However, the point at which the interrupt or trap is driven
is entirely random. To ensure that a trap is only driven when
the processor has been booted, a signal probe is placed
within the random code onto the interrupt enable. When this
signal changes value, the boot sequence has finished, so the
trap can be handled and the context save areas set up – the
random trap code can then be run.

No checking is built into the pinwagglers themselves –
it is assumed that assertions within the code will trigger if
we drive an interrupt or trap and it is not handled correctly.
Instead, we are particularly interested in what happens
when interrupts randomly arrive while executing a known
instruction stream. We have historically used directed
testing to test opcode and exception interaction, but this
limits the number of scenarios tested considerably. By
making it random, scenarios that have not been explicitly
thought of can be automatically generated and tested.
What has been tested is recorded using functional coverage.
In this case, we monitor the exception controller and the
pipeline stages and, on accepting an exception, we record
what is in the pipeline at the time, and what is the state of
our decode block.

The TriCore-2 supports Idle and Suspend modes. Idle
switches off the clock to the core, whereas the suspend can
halt the processor to allow off-chip debug. The suspend state
can only be exited by resetting a register within the core.

The idle pin is easily driven by the construction of a
random pin-waggler, again relying on in-line assertions (or
checks built into the e testbench) and functional coverage.
However, suspend is more complex. If I randomly drive a
suspend by simply waggling a pin, it will stay in that state
even if I remove the driving source. To get around this, we
developed what we term transaction-injection.

The eVC Master discussed above consists of three blocks.
However, the bus-driver unit is itself partitioned into two
further blocks in order to handle the separate address and
data phases. The cores of these blocks are internal pipelines
that store the state of the transaction which is being
processed. The bus driver takes whatever is on the bottom
of the address pipe, and drives it onto the bus. Once granted
access to the bus, the transaction is passed to the data pipe.

In order for the eVC Master to know what a transaction
is, we have to define a data structure that contains a number
of physical fields. Under normal operation, the generator
block reads in its constraints, and randomly creates
transaction data structures. The resulting structure is then
placed into the address pipe for the eVC Master to process
when it is ready.

Development of the eVC can be
considered as a prototyping of the system
– it can allow you to try out the protocol
before expensive system simulation

‘‘
’’

010-015_ESS_DecJan0405_EJ 11/19/04 6:26 PM Page 6

Verification

IEE Electronics Systems and Software | December/January 2004/05 15

uncovered when the tests were used as part of a regression
– this bug manifested itself once other parts of the design
had been fixed. All of these bugs had not been found by the
previously used directed techniques, and would have been
unlikely to be found – the bugs were often extreme corner
case bugs with specific entry conditions.

Once this approach had been proven, the hand written
assembler component was replaced by assembler generated
randomly by an Instruction Stream Generator (ISG). This
ISG is again a constraint-based model of the system, and
generates its assembler by reading a constraint file, and
testing for the expected outcome by using a C-model during
the generation process.

This approach in particular has proven adept at finding
bugs. Scenarios which would have otherwise been
unthought of were hit randomly, and more than 30 new bugs
were found. Coverage-oriented verification was of particular
help here – by highlighting which areas of the function
space were not covered, new tests could be rapidly aimed at
new areas of the design, and new bugs found.

The development of eVCs early in the design phase

prototypes the system, and allows the exploration of the
protocol space during the construction of the units. If done
properly, then the holes in the protocol description can be
established before the design phase or the system
construction is underway.

Block level eVCs can be re-used in the system
environment. If used without major modifications to the
existing system test infrastructure, they gain rapid
acceptance. If simply used to stress standard interfaces, they
can find bugs. However, their usefulness can be enhanced by
creating extra units which also stress the processor core
while exploiting the existing eVC architecture.

Of paramount importance is the functional coverage. As
system designs are so big, structural coverage gathering –
that is, statement, branch and toggle coverage – is not often
run in reality due to the simulation overhead. The ability to
record immediately what has been driven and received by
the eVC masters into the DUT rapidly allows you to uncover
test holes, and to generate new tests to cover them quickly.
It should also complement any existing functional coverage
of the processor. �

Darren Galpin is with Infineon Technologies

Note that the eVC Master has no knowledge of where
exactly the transaction came from – it simply sees a series
of transactions placed into its address pipe. We can use this
to generate a transaction of our own. Every time we drive a
suspend signal, we wait a random amount of time before
creating a new transaction, which corresponds to the
transaction necessary for resetting the core register.

This new transaction is then injected into the Master’s
address pipe, even though the generator is filling the pipe at
the same time. Note that the generator has been configured
to only put a maximum of two transactions at any one time
into the address pipe, so we know that our register-reset
transaction will be at most the third in line. Care does have
to be taken with this transaction injection – it can only be
performed between atomic transactions. If a composite or
locked transaction is queued up, we have to ensure that the
reset transaction is injected after this has completed. If not,
we could cause the master to attempt to violate its own
protocol constraints.

We also have to take care with address constraints. A
random generator will attempt to generate transactions
over the entire legal address space, and this register reset
has to be within the legal address space. However, the
generator used for the eVC master generates sequences,
rather than individual transactions. Thus we constrain the
sequence to use all addresses except the register address,
while constraining the master to be able to use all of the
address space.

The true test of the system is to run all of these exception
drivers simultaneously while the core is executing code.
However, we can stress the processor still further. The
TriCore-2 has two slave ports connecting to the hub, one for
the data scratchpad and one for the code. Each of these
scratchpads is accessible from the system. We can constrain
our eVC Master to write into these areas, being careful in
the design to ensure that the eVC and processor do not
conflict over the same area of scratchpad memory. In this
way we can particularly stress the system, as the memory
management unit has to service both the core and external
accesses simultaneously.

At the same time, we can locate the context save areas
into the SRAM on a slow bus. This has the advantage of
forcing random stalls into the simulation – every time that
we drive a random interrupt or system trap, the processor
will have to access the slow bus, which can take tens of
cycles. This increases the likelihood of getting further
exceptions while the internal pipeline of the processor has
stalled and has branched, a suspected bug hot-spot.

Within two weeks of setting this system environment, six
new bugs had been found in the processor block, all caused
by the interaction of multiple exceptions while the processor
was branching or jumping – and this was despite the
directed test suite nearing completion. A further bug was

Six bugs were found in the processor
block, all caused by the interaction of
multiple exceptions while the processor
was branching

‘‘
’’

em
ol

’

010-015_ESS_DecJan0405_EJ 11/19/04 6:26 PM Page 7

