
Functional Verification and Testbench Generation

84 0740-7475/04/$20.00 © 2004 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers

FUNCTIONAL VERIFICATION is widely recognized as

the bottleneck of the hardware design cycle. With the

ever-growing demand for greater performance and faster

time to market, coupled with the exponential growth in

hardware size, verification has become increasingly dif-

ficult. Although formal methods such as model checking1

and theorem proving have resulted in noticeable

progress, these approaches apply only to the verification

of relatively small design blocks or to very focused verifi-

cation goals. In current industrial practice, simulation-

based techniques play a major role in the functional

verification of microprocessors.2, 3

The recent emergence of hardware verification lan-

guages and comprehensive environments designed to

automate the functional verification process4 has sig-

nificantly affected simulation-based technology.

Engineers typically use these environments to verify

ASICs, SoCs, and unit-level components in a processor.

Using such environments to verify large processors (x86,

PowerPC, and so on) still requires signif-

icant effort.

Current industry practice is to use

separate, automatic, random stimuli gen-

erators for processor- and multiprocessor-

level verification. The generated stimuli,

usually in the form of test programs, trig-

ger architecture and microarchitecture

events defined by a verification plan.5 In

general, test programs must meet the

validity requirement (the tests’ embedded

behavior should conform to the targeted design’s speci-

fication) and the quality requirement (the tests should

expand the targeted design’s coverage and increase the

probability of bug discovery). The generator can produce

many distinct, well-distributed test program instances that

comply with user requests. Numerous random selections

made during generation achieve the variation among dif-

ferent instances.

The first generation of test generators at IBM was

developed in the mid-1980s. These generators incorpo-

rated a biased, pseudorandom, dynamic generation

scheme.6 The need for a generic solution, applicable to

any architecture, led to the development of a model-

based test generation scheme that partitions the test

generator into two main components: a generic, archi-

tecture-independent engine and a model that describes

the targeted architecture.7 In 1991, IBM developed the

first model-based pseudorandom test program genera-

tor, Genesys.7 Widely used during the past decade, both

Genesys-Pro: Innovations in
Test Program Generation for
Functional Processor
Verification

Editor’s note:
Historically, IBM’s random test-program generation (RTPG) methodology has
tightly coupled architectural information with the TPG tool. Model-based TPG
removes this architecture dependency and provides a generic solution to
functional testbench generation. Genesys-Pro, the second-generation model-
based TPG tool, has many improvements over its predecessor, Genesys,
including greater expressive power in the test template language and more
constraint-solving processing power.

—Li-C. Wang, University of California, Santa Barbara

Allon Adir, Eli Almog, Laurent Fournier,
Eitan Marcus, Michal Rimon, Michael Vinov,
and Avi Ziv
IBM Research Lab, Haifa

inside and outside IBM, Genesys has

proved the model-based approach’s

strength and versatility on different archi-

tectures and designs.

This article describes Genesys-Pro,

IBM’s third-generation test generator for

the functional verification of micro-

processors. Genesys-Pro relies on the

same underlying model-based approach

as Genesys but has three significant

advancements. First, the language that

describes the template of the test to be

generated has the expressiveness of a pro-

gramming language. It lets users define

any desired verification scenario while

leaving noncritical parameters unspeci-

fied. This allows virtually unlimited con-

trol over the events to be generated. The

second advantage is Genesys-Pro’s frame-

work for modeling processor architec-

tures. In addition to the standard modeling constructs

present in other modeling environments, Genesys-Pro

provides high-level building blocks specifically suited

for describing processors. This combination offers the

flexibility to model the architecture’s complex and pro-

cedural aspects, such as very large instruction words

(VLIWs) and various address translation mechanisms.

The third major advancement is the powerful gener-

ation engine. The generator translates the test genera-

tion problem into a constraint satisfaction problem

(CSP) and uses a generic CSP solver customized for

pseudorandom test generation8 to increase the proba-

bility of generation success and to improve test program

quality. The CSP framework is the backbone of all

recently developed IBM test generators.

These three components—the test template lan-

guage, the modeling framework, and the generation

engine—have all been specifically tuned for verifying

processors. This is a major difference between Genesys-

Pro and other commercial testing environments, such

as Vera, e, and the System-C Verification Library. These

environments provide powerful high-level languages

that incorporate multiple programming paradigms.

However, because they are not specific to the proces-

sor verification domain, verifying processor architec-

tures demands greater effort than with Genesys-Pro.

Genesys-Pro overview
Genesys-Pro’s architecture is based on a clear delin-

eation of three types of knowledge relevant to test pro-

gram generation for processor verification. First, there’s

the generic engine with knowledge about general

processor architectures and general test generation

techniques. Then there’s an architectural model that

contains processor-specific information. This principally

includes a declarative description of a specific proces-

sor architecture and a database of testing knowledge

relevant to that processor. The testing knowledge

describes aspects of the architecture and is used to cre-

ate high-quality tests. Following the model-based

approach, this architecture-specific model remains sep-

arate from the generic generation engine. Finally, test

templates describe specific scenarios meant to cover

the tested processor’s verification plan.

Figure 1 is an overview of Genesys-Pro. A verification

engineer provides a test template of the scenario that

should occur in the test program. Genesys-Pro generates

a test by formulating and then solving a separate con-

straint problem for each test instruction. The constraint

problem is based on constraints that originate from both

the architectural description and the testing knowledge,

and Genesys-Pro annotates the constraints according to

directives in the test template. Constraints can be either

mandatory (hard) or nonmandatory (soft). Constraints

originating from the architectural description are typi-

cally mandatory. Nonmandatory constraints are those

that the CSP engine tries to solve but might give up on

if it fails to find a solution. Users can set testing-knowl-

edge constraints and constraints originating from the

test template as mandatory or nonmandatory.

85March–April 2004

Test
template

Test
program

Design
simulator

Architectural
simulator

Architecture-specific
testing knowledge

Architecture description
Modeling
engineer

CSP
engine

Verification
engineer

Architecture-independent
knowledge

Model

Engine

Genesys-Pro

Figure 1. General structure of the Genesys-Pro random test generator.

After formulating the CSP, the generation engine

solves it by using a dedicated CSP engine appropriate

for the type of problems common in test program gen-

eration.8 After generating each instruction, Genesys-Pro

sends it to an architectural simulator for simulation.

Thus, the generator can maintain an accurate view of

architectural resources, which is essential for resolving

subsequent constraints and for producing expected

results for each resource involved in the test.

The generated test program passes to a design simu-

lation environment, which runs the program and looks

for mismatches between the results specified in the test

and the actual results produced by the design simula-

tor. The design simulation environment also uses other

means of detecting violations, such as assertions and

coherency monitors. Coverage data collected during

simulation helps to monitor the progress of the verifi-

cation process.4

Test template language
The test generator lets users describe scenarios

required for the verification test plan. Genesys-Pro has

a highly expressive input language for writing such sce-

narios. The language consists of four types of state-

ments: basic instruction statements, sequencing-control

statements, standard programming constructs, and con-

straint statements. Users combine these statements to

compose complex test templates that, in varying detail,

describe the test scenarios. The language lets users con-

trol the degree of randomness in the generated tests,

from completely random to completely directed. In

most cases, the template balances both modes, explic-

itly formulating the essential parts of what is to be test-

ed while leaving the rest unspecified. The generation

engine translates these verification scenarios into com-

plete test programs.

Figure 2 shows an

example of a test template

and a corresponding gen-

erated test. The test

template describes a

table-walk scenario that

stores the contents of a

randomly selected register

into memory addresses

ranging from 0x100 to

0x200, in increments of 16

bytes. An Add or a Sub

instruction follows each

Store. The first source reg-

ister used for each Add instruction is the same as the

source register of the previous Store. Additionally, the

template requests several bias constraints controlling

such characteristics as interdependency between

instructions and the alignment of addresses.

Basic instruction statements
Instruction statements specify which instructions to

place in the generated test. For example, the template

in Figure 2 includes four basic instruction statements for

Load, Store, Add, and Sub. Users can also control vari-

ous properties of the instruction, such as which

resources to use. These properties can be randomly

selected (indicated by a “?” in the template), equal to

some specific value (for example, R5), or dependent

on a previous value according to user-defined variables.

Sequencing-control statements
Sequencing control consists of the following five

statements:

� Sequence directs Genesys-Pro to generate a list of

ordered substatements.

� Select directs Genesys-Pro to generate a single sub-

statement randomly selected from a list of substate-

ments according to a weight attribute.

� Repeat causes the generator to repeat substatements

a given number of times or as long as a specified

repeat condition is satisfied. In the example, the

Repeat statement directs the generator to keep gen-

erating the pairs of Store and Add or Sub instructions

for as long as the address variable addr is less than

0x200.

� Permute directs Genesys-Pro to generate a list of sub-

statements in a randomly selected order.

Functional Verification and Testbench Generation

86 IEEE Design & Test of Computers

Test program template
Variable: addr = 0x100

Variable: reg

Bias: Resource-Dependency(GPR) = 30

Bias: Alignment(4) = 50

IInnssttrruuccttiioonn: Load R5 ← ?

Bias: Alignment(16) = 100

RReeppeeaatt (addr < 0x200)

IInnssttrruuccttiioonn: Store reg → addr

SSeelleecctt

IInnssttrruuccttiioonn: Add ? ← reg + ?

Bias: SumZero

IInnssttrruuccttiioonn: Sub ? ← ? – ?

addr = addr + 0x10

Test program
Resource Initial Values:

R6 = 8, R3 = – 25,..., R17 = – 16

100 = 7, 110 = 25,..., 1F0 = 16

Instructions:

500: Load R5 ← FF0

:

504: Store R4 → 100

508: Sub R5 ← R6 – R4

50C: Store R4 → 110

510: Add R6 ← R4 + R3

:

57C: Store R4 → 1F0

580: Add R9 ← R4 + R17

Figure 2. Test program template and the corresponding test.

� Concurrent directs Genesys-Pro to generate instruc-

tion streams for each processor or thread in a multi-

processor configuration. The instruction streams will

execute concurrently.

Standard programming constructs
Standard programming constructs include variable

definitions, assignment statements, expressions, and

assertions. Genesys-Pro supports typed, scoped vari-

ables, including arrays. A variable’s scope is limited to

the sequencing statement declaring the variable and

to any of the sequencing statement’s substatements.

Users can assign each variable a value through an

assignment statement and reference it within expres-

sions. In the example in Figure 2, the addr variable ini-

tially has the assigned value 0x100. Variable addr

appears later in the condition of the Repeat sequenc-

ing statement that directs the generator to generate

pairs of instructions for as long as addr is less than

0x200. The same variable serves to specify the Store

instruction’s target address. Variables can provide par-

tial specification of values to particular properties of an

instruction statement. For example, the reg variable

can specify that the Store instruction’s source register

is the same as the Add instruction’s source register. The

generation engine randomly chooses the actual value

for the reg variable.

Expressions involve all the standard arithmetical,

Boolean, and bit vector operators over constants, vari-

ables, and several predefined functions useful for tem-

plate construction (for example, a random number

generator). Expressions generally refer to template vari-

ables, resource values (say, the value of a register or a

memory segment), test generation information (such as

the number of registers used in the test so far), and sev-

eral system constants (for example, the number of

processes or memory size).

Genesys-Pro supports pre- and post-assertions for

attachment to any statement in the template. Pre-

assertions mean that the following statement should be

part of the test only if the assertion holds before the state-

ment’s generation. Post-assertions indicate that the pre-

vious statement should be part of the test only if the

assertion holds after the statement’s generation.

Procedurally, Genesys-Pro undoes the corresponding

statement’s generation if the post-assertion fails. Post-

assertions are unusual in programming languages, but

they are useful in a test template language because it is

often difficult to preassess a statement’s condition, as

instructions have complex, externally defined semantics.

Constraint statements
Constraint statements influence the quality of the

generated tests by biasing the generator’s random deci-

sions toward interesting areas. Users can activate or

deactivate constraints, or mark them as mandatory or

as prioritized nonmandatory.

The list of available constraints originates from the

database of design-specific testing-knowledge con-

straints in the model (discussed later) or from a general

list of generic biasing constraints applicable to any

processor and provided as part of the generic genera-

tion engine. The following are examples of generic bias-

ing constraints:

� Alignment bias causes the generation of addresses

aligned at, near, or across some specified address

boundaries, such as a word, a cache line size, or a

page.

� Cache bias causes the generation of memory access

patterns that in turn cause specified cache events

such as hits, misses, and line replacements. Specified

initializations of cache lines placed in the generated

test (called cache warm-loading) can also help to

generate some of these events.

� Translation bias is responsible for triggering various

address translation mechanisms. Interesting transla-

tion scenarios include translation table events, trans-

lation path protection events, translation path reuse,

and sharing.

� Resource dependency bias controls interdependen-

cies among resources used by instructions that are

close to each other in the test stream. Users can ask

for source-source, source-target, target-source, and

target-target dependencies, or for independence of

resources (that is, they can cause close instructions

to use different registers).

Constraint statements can also adjust the meaning

of constraints. In Figure 2, the template sets the align-

ment size to 4 bytes and the activation rate of the align-

ment generic biasing constraint to 50%. This parameter

setting holds for all instructions in the test except Load,

which changes the alignment size to 16 bytes and the

activation rate to 100%. This bias causes the generation

engine to select a 16-byte aligned address for the Load

instruction, as shown in the test. In addition, the request

for the resource dependency bias causes the generation

engine to select R5 as the target register of the Sub

instruction in address 0x508.

The features just described significantly advance the

87March–April 2004

Genesys-Pro template language’s expressiveness. In its

predecessor, Genesys, the approach was based on con-

trolling the test structure through a dedicated graphical

user interface that supported limited test patterns, with-

out the flexibility of a full programming language. A

detailed description of the industrial experience with

the Genesys and Genesys-Pro languages is available in

the literature.9

Modeling framework
The model-based approach permits rapid develop-

ment and easy maintenance of a test generation envi-

ronment. Separating the model from the engine gives

users the flexibility to maintain tool versions for several

different designs and follow-ons. This separation also

supports ongoing design changes—without depending

on tool developers.

Genesys-Pro offers the following major advance-

ments in the modeling framework:

� The modeling framework provides high-level build-

ing blocks designed specifically for modeling proces-

sors. This makes the model easier to write and to

understand.

� The constraint-based representation of the modeled

components gives the flexibility required to model

many different and complex architectures.

� Genesys-Pro emphasizes the delineation between

architecture-generic information (contained in the

engine) and architecture-specific information (includ-

ed in the model). The earlier Genesys system kept

parts of the architecture-specific information in the

engine because of that

information’s complex

procedural nature.

The more advanced

Genesys-Pro can now

model this information

and keep it separate

from the Genesys-Pro

engine, providing the

benefits of a model-

based approach. This

capability is especially

useful in modeling

VLIW architectures and

complex address trans-

lation mechanisms.10

The model’s architec-

ture-dependent knowledge includes the following:

� a declarative description of the processor, including

instructions, design resources (such as registers and

caches), and high-level mechanisms (such as

address translation); and

� design-specific testing knowledge to increase the

test’s coverage of verification events that randomly

generated tests are likely to miss.

Instructions, described as constraint problems

(attributes and relations), form the bulk of the Genesys-

Pro model. Instruction attributes include an opcode and

attributes that relate to the resources the instructions

use, such as data, the resource family (floating-point

register or memory), address (say, register number 5 or

memory address 100), and number of units (for exam-

ple, four bytes for a Load-Word memory operand).

Figure 3 shows a model of a Load-Word instruction

that loads four bytes from memory. The operands form

a tree structure, with the attribute names (in bold) and

value domains. The Load instruction model has two

operands: the source memory and the target register.

The source memory operand, in turn, has two sub-

operands: the base register and the displacement

(immediate field). The arcs in the figure denote rela-

tions between attributes and correspond to constraints.

The instruction’s architectural definition imposes these

relations. For example, the source memory address is

the sum of the value of the base register and the dis-

placement (source.address = base.data + displace-

ment.data in Figure 3). Relations such as this, which we

Functional Verification and Testbench Generation

88 IEEE Design & Test of Computers

Load-Word

Base

Target

Displacement

Source

PageCross

source.address = base.data + displacement.data

base.address ≠ target.address

Family Memory
Address [0:232−1]
Units 4
Data [0:232−1]

Family General-purpose register
Address [0:31]
Units 1
Data [0:232−1]

Data [0:216−1]

Family General-purpose register
Address [0:31]
Units 1
Data [0:232−1]

Figure 3. Model of a Load-Word instruction.

can express as equations with arithmetic and Boolean

operators, are stated directly in the model. The model-

ing of relations with more-complex semantics can refer

to an external implementation in C++, which the mod-

eling engineer would have to provide.

We can also model instruction-specific testing knowl-

edge as part of the instruction model. As an example,

consider the instruction Add Rt ← Ra + Rb. The proba-

bility of randomly generating an instance of the Add

instruction in which data(Ra) + data(Rb) = 0 is fairly

low. Verification engineers might decide to give this

combination a higher probability of appearing in tests.

In this case, they can model a corresponding testing-

knowledge relation between attributes data(Ra) and

data(Rb). Figure 3 includes a testing-knowledge con-

straint (PageCross, represented by the dashed arc) that

constrains the address attribute to cross a page

boundary. Experience with Genesys-Pro shows that

users often accumulate this type of testing knowledge

during design verification and then pass it on to the

models of follow-on designs. In addition, all designs that

comply with the IEEE floating-point standard can use a

testing-knowledge database based on FPgen.11 This test-

ing knowledge focuses on verifying the data path of

floating-point designs. Genesys-Pro uses it for generat-

ing a rich variety of floating-point events.

Test generation engine
The Genesys-Pro generation engine takes a test tem-

plate and a declarative model of the architecture as

input and produces a test program that complies with

the scenario requested by the template. Because the

template typically represents a large set of verification

events, there are several different ways to satisfy it. The

generator’s pseudorandom nature, coupled with its

generic biasing constraints, ensures that each engine

invocation exercises the requested scenario in different

contexts by varying all parameters that aren’t critical to

the task itself. Consider the Load instruction in the table-

walk example. Because the input template doesn’t

restrict the source memory address, different engine

invocations might satisfy the Load request in different

and interesting ways. For example, the selected address

might cause a cache event or a translation event.

Test program generation occurs on two levels: stream

and single instruction. Stream-level generation deter-

mines which instructions appear in the test and in what

order, while instruction-level generation creates specif-

ic instruction instances. The two levels use different

techniques to deliver their results: Stream-level genera-

tion is a recursive process; instruction-level generation

uses constraint satisfaction techniques. The hybrid test-

generation approach implemented by Genesys-Pro

enables the generation of long, high-quality tests (tens

of thousands of instructions). This increases the chance

of hitting events such as filling large buffers and explor-

ing machine states reachable only by nontrivial execu-

tion paths.12 An alternative approach would be to solve

the entire test problem as a single CSP. This way, users

could express tighter dependencies at the stream level,13

but, because the CSP is NP-hard, the approach severe-

ly limits the size of generated tests.

Stream generation
Sequencing-control statements in the user’s test tem-

plate are the primary drivers of stream generation. For

each control statement, Genesys-Pro associates a sepa-

rate stream solver, which recursively invokes solvers for

its substatements. Each recursive path terminates with

an invocation of the single-instruction solver. For an

illustration, consider the select statement in Figure

2. The stream solver associated with this statement ran-

domly chooses one of its substatements—say, the Add

instruction—and invokes its solver.

In the test template, the user can express these

dependencies between different instructions in the

stream through shared variables (for example, the vari-

able reg in Figure 2) and generic biases (such as the

resource dependency bias in Figure 2).

When generating a particular statement, the engine

considers only previously generated instructions but

does not consider requests that follow the statement in

the template. This can increase the possibility of failing

to generate statements later on. We adopted two strate-

gies to reduce this problem. The first involves detecting

failures before they occur and injecting special instruc-

tions into the test to prevent them.14,15 For example,

when all the resources from a bounded resource family

(such as floating-point registers) are initialized and can

no longer be set to a requested value, Genesys-Pro

applies a register reloading technique15 to inject load

instructions into the test stream, thereby setting registers

with the desired values. In addition, each stream solver

has rollback capabilities that let it retry substatement

generation in case of failure. For example, in Figure 2,

if the Add instruction fails to generate, the select

solver will roll back to the state before the failed gener-

ation attempt and select another substatement (say, the

Sub instruction) to generate.

The stream solver also allows controlled generation of

89March–April 2004

reentrant instructions that will execute more than once

in a single test run. Examples are procedure calls, recur-

ring interrupts, user-defined loops, and self-modifying

code. Prohibiting randomly generated loops protects

against generating infinite loops. When generating tests

for multiprocessor or multithreaded designs, the stream

solver creates separate instruction sequences for each

processor or thread. This can involve additional syn-

chronization mechanisms, described in the literature.16

Instruction generation
We decided to handle the problem of generating a

single instruction by using the well-researched class of

CSPs.8 A CSP consists of a finite set of variables and a set

of constraints between these variables. Each variable is

associated with a set of possible values, known as its

domain. A constraint is a relation defined on some sub-

set of these variables and denotes valid combinations

of their values. A CSP solution assigns each variable a

value from its domain, such that these values satisfy all

constraints. A constraint graph represents each CSP; its

nodes are the CSP’s variables, and its arcs are the CSP’s

constraints.

Generating a single instruction is a three-phase

process. First, the generation engine formulates the

instruction request as a CSP. Next, the instruction solver

finds a solution to the CSP and produces an instance of

the instruction that satisfies the constraints. Finally, the

instruction solver invokes the architecture reference

model for simulating the generated instruction.

To formulate the CSP, we first transform the instruc-

tion’s architectural model into a CSP graph by associ-

ating a CSP variable with each instruction attribute (for

example, base.address and target.address in Figure 3).

We also associate a CSP arc with each architectural and

testing-knowledge constraint; for example, we convert

the relation base.address ≠ target.address in Figure 3

into an arc between these attributes. The constraints

specified in the test template are then superimposed on

the CSP graph. For example, the target address of the

first Load in the test template reduces to the single ele-

ment 5, according to the request for R5 in the template.

CSP solvers rely on search algorithms to find an

assignment to each variable from its domain such that

the assigned value satisfies all constraints. The test pro-

gram generation domain typically has CSPs with large

domains for their variables, resulting in very large search

spaces. For example, the data attribute for a 32-bit reg-

ister resource and the address attribute for a 32-bit

machine both have a domain size of 232. A CSP solver’s

challenge is to produce uniformly distributed random

solutions that satisfy mandatory and nonmandatory

constraints when the problem’s search space is very

large. In general, CSP solution techniques that use

strong filtering mechanisms to prune the search space

are well suited to this type of problem.

Maintaining arc consistency (MAC)8 is a family of

algorithms that uses arc consistency as its filtering mech-

anism. We call an arc consistent if for any value in the

domain of any variable in the arc there exists a valid

assignment to the other variables in the arc that satisfies

the constraint. The procedure for reaching arc consis-

tency removes from the domains of variables those val-

ues that cannot participate in any solution.

Genesys-Pro uses an external, generic solver that

implements a customized MAC algorithm for the

pseudorandom test-program generation domain. This

algorithm produces uniformly distributed random solu-

tions that satisfy all the mandatory constraints and as

many of the nonmandatory constraints as possible.8 The

solution proceeds as follows:

1. The algorithm first applies the arc consistency pro-

cedure over all mandatory constraints. If a con-

straint fails to reach arc consistency, the solution

process fails; otherwise the process repeatedly

reduces the domains of each of the arc’s variables.

2. The algorithm then applies arc consistency over all

nonmandatory constraints. It invokes constraints in

priority order and ignores failures. Then it recon-

siders the mandatory constraints, and the whole

process repeats until it reaches a fixed point—that

is, the process does not further reduce any variable’s

domain.

3. The algorithm then randomly selects one variable

and reduces its domain to a single element. This

retriggers the arc consistency procedure of steps 1

and 2.

4. After reducing the domain of each variable to a sin-

gle element, the algorithm reaches a solution.

Table 1 shows one possible application of the algo-

rithm for the Load instruction. Beginning with the sec-

ond row, each line in the row shows one constraint and

the domain reduction it causes. The constraints appear

in the order of their application by the arc consistency

procedure. From the table we see that after the first

fixed point (fixed point 0), the solver eliminates the

value 5 from the base.address variable’s domain by

applying the constraint base.address ≠ target.address.

Functional Verification and Testbench Generation

90 IEEE Design & Test of Computers

Similarly, the source

operand’s address has

been reduced to quad-

word aligned addresses.

This appears as the

hexadecimal mask

0xXXXXXXX0, where each

X represents a 4-bit don’t-

care.

MAC-based algorithms

are well suited for the

test program generation

domain because they

postpone heuristic deci-

sions until after consider-

ation of all architectural

and testing-knowledge

constraints. Thus, these

algorithms can find solu-

tions that satisfy all the

architectural constraints

and as many of the non-

mandatory constraints as

possible. Many other CSP

algorithms8 rely on local

heuristic methods for

early pruning of the

search space. This weak-

ens their ability to solve

several constraints simul-

taneously and to allow a

uniform exploration of the

search space. To demon-

strate this, we compared

Genesys-Pro’s solving

capabilities and its MAC-

based solution with the

capabilities of its prede-

cessor, Genesys, which

uses a local heuristic

search method. In both

cases, the test template

requests load instructions

with 16-byte (quad-word)

alignment and a read-

after-write register dependency. We computed the per-

centage of instructions that satisfy both of these

constraints as a function of the test length.

Figure 4 shows that Genesys-Pro’s generation engine

maintained a high level of success regardless of test

length (the x-axis). Genesys’ success level is significantly

lower and decreases with test length. Furthermore, in

Genesys-Pro, the rate for simultaneously satisfying two

types of bias—alignment and resource dependency—

is the same as that of satisfying the resource dependen-

91March–April 2004

Table 1. Load instruction generation.

Fixed point Constraint/selection Domain reduction

Initial states NA base.address = 0..31

source.address = 0xXXXXXXXX

target.address = 5

...

Fixed point 0 base.address ≠ target.address base.address = 0..4, 6..31

Alignment(16) source.address = 0xXXXXXXX0

source.address = base.data + displacement.data None

Fixed point 1 Random selection base.data = 0x0

source.address = base.data + displacement.data displacement.data = 0xXXX0

source.address = 0x0000XXX0

Fixed point 2 Random selection base.address = 4

Fixed point 3 Random selection displacement.data = 0x0FF0

source.address = base.data + displacement.data source.address = 0x00000FF0

Fixed point 4 Random selection source.data = 0x0F

Fixed point 5 Random selection target.data = 0xFFFFFFFF

100

90

80

70

60

50

40

30

20

10

0

A
cc

ep
te

d
bi

as
 (

pe
rc

en
ta

ge
)

0 5 10 15 20 25

No. of requested load instructions

30 35 40 45 50

Genesys-Pro
alignment bias

Genesys-Pro
resource dependency bias

Genesys-Pro both biases

Genesys alignment bias

Genesys
resource dependency bias

Genesys both biases

Figure 4. Ability of Genesys and Genesys-Pro to find acceptable solutions to constraint

problems with biases for alignment and resource dependency. The graph also shows

the rate of simultaneous satisfaction for both biases.

cy bias alone. In Genesys, the simultaneous satisfaction

rate is lower than the rate when satisfying either of the

two biases separately.

GENESYS-PRO IS CURRENTLY the main test generation

tool for functional verification of IBM processors, includ-

ing several complex processors. Although it requires a

high level of expertise to model architectures and test-

ing knowledge to use the full power of test templates,

Genesys-Pro’s benefits are already apparent. Generated

tests are higher in quality, different types of knowledge

are much easier to maintain, full coverage of complex

verification plans is possible, and there are very few or

no escape bugs. We’ve found that the new language

considerably reduces the effort needed to define and

maintain knowledge specific to an implementation and

verification plan. �

References
1. E.M. Clarke, O. Grumberg, and D.A. Peleg, Model

Checking, MIT Press, 1999.

2. B. Bentley, “Validating the Intel Pentium 4 Microproces-

sor,” Proc. 38th Design Automation Conf. (DAC 01),

ACM Press, 2001, pp. 244-248.

3. S. Taylor et al., “Functional Verification of a Multiple-Issue,

Out-of-Order, Superscalar Alpha Processor—the DEC

Alpha 21264 Microprocessor,” Proc. 35th Design Automa-

tion Conf. (DAC 98), ACM Press, 1998, pp. 638-643.

4. F. Haque, J. Michelson, and K. Khan, The Art of Verifica-

tion with Vera, Verification Central, 2001.

5. L. Fournier, Y. Arbetman, and M. Levinger, “Functional

Verification Methodology for Microprocessors Using the

Genesys Test Program Generator: Application to the x86

Microprocessors Family,” Proc. Design Automation and

Test in Europe (DATE 99), IEEE CS Press, 1999, pp.

434-441.

6. A. Aharon et al., “Verification of the IBM RISC

System/6000 by a Dynamic Biased Pseudo-random Test

Program Generator,” IBM System J., vol. 30, no. 4, Apr.

1991, pp. 527-538.
7. A. Aharon, Y. Lichtenstein, and Y. Malka, “Model-Based

Test Generator for Processor Design Verification,” Proc.

7th Innovative Applications of Artificial Intelligence Conf.

(IAAI 94), AAAI Press, 1994, pp. 83-94.

8. E. Bin et al., “Using Constraint Satisfaction Formulations

and Solution Techniques for Random Test Program

Generation,” IBM Systems J., vol. 41, no. 3, Aug. 2002,

pp. 386-402.

9. M. Behm et al., “Industrial Experience with Test Genera-

tion Languages for Processor Verification,” submitted to

DAC 04, 2004.

10. A. Adir et al., “Deeptrans—A Model-Based Approach to

Functional Verification of Address Translation

Mechanisms,” Proc. 4th Int’l Workshop Microprocessor

Test and Verification: Common Challenges and

Solutions, IEEE CS Press, 2003, pp. 3-7.

11. M. Aharoni et al., “FPgen—A Test Generation Frame-

work for Datapath Floating-Point Verification,” Proc. 8th

Ann. IEEE Int’l Workshop High-Level Design Validation

and Test (HLDVT 03), IEEE Press, 2003, pp. 17-22.

12. A. Hartman, S. Ur, and A. Ziv, “Short vs. Long—Size

Does Make a Difference,” Proc. High-Level Design Vali-

dation and Test Workshop (HLDVT 99), IEEE Press,

1999, pp. 23-28.

13. A. Adir et al., “Piparazzi: A Test Program Generator for

Micro-Architecture Flow Verification,” Proc. 8th Ann.

IEEE Int’l Workshop High-Level Design Validation and

Test (HLDVT 03), IEEE Press, 2003, pp. 23-28.

14. A. Adir, R. Emek, and E. Marcus, “Adaptive Test

Program Generation: Planning for the Unplanned,” Proc.

7th Ann. IEEE Int’l Workshop High-Level Design Valida-

tion and Test (HLDVT 02), IEEE Press, 2002, pp. 83-87.

15. A. Adir et al., “Improving Test Quality through Resource

Reallocation,” Proc. 6th IEEE Int’l Workshop High-Level

Design Validation and Test (HLDVT 01), IEEE CS Press,

2001, pp. 64-69.

16. A. Adir and G. Shurek, “Generating Concurrent Test-

Programs with Collisions for Multi-Processor

Verification,” Proc. 7th Ann. IEEE Int’l Workshop High-

Level Design Validation and Test (HLDVT 02), IEEE

Press, 2002, pp. 77-82.

Allon Adir is a research staff mem-
ber at the IBM Research Laboratory in
Haifa. His research interests include
test program generation, multiproces-
sor verification, languages for shared

memory, and distributed programming. Adir has a BS
and an MS in computer science from the Technion,
Israel Institute of Technology.

Eli Almog is a research staff mem-
ber at the IBM Research Laboratory in
Haifa. His research interests include
test program generation, processor
verification, and scheduling algo-

rithms. Almog has a BS in mechanical engineering
and an MS in computer science from the Technion,
Israel Institute of Technology.

Functional Verification and Testbench Generation

92 IEEE Design & Test of Computers

Laurent Fournier is a research
staff member at the IBM Research
Laboratory in Haifa. His research inter-
ests include test program generation,
verification methodology, and func-

tional coverage. Fournier has a BS and an MS in com-
puter science from the Technion, Israel Institute of
Technology.

Eitan Marcus is a research staff
member in the Verification Technolo-
gies Department at the IBM Research
Laboratory in Haifa. His research inter-
ests include test program generation,

functional coverage, and constraint-based modeling
languages. Marcus has a BS from Columbia Universi-
ty and an MS from Carnegie Mellon University, both in
computer science.

Michal Rimon is a research staff
member at the IBM Research Labora-
tory in Haifa. Her research interests
include knowledge-based systems,
test program generation, planning,

and constraint satisfaction. Rimon has a BS in mathe-
matics and computer science from Tel-Aviv University
and an MS in information systems management from
the Technion, Israel Institute of Technology.

Michael Vinov is a research staff
member at the IBM Research Labora-
tory in Haifa. His research interests
include computer architectures, test
program generation, functional verifi-

cation, and parallel computing. Vinov has a BS in com-
puter engineering from the Moscow Institute of Radio
Technique, Electronics and Automation; and an MS in
computer engineering from the Technion, Israel Insti-
tute of Technology.

Avi Ziv is a research staff member in
the Verification Technologies Depart-
ment at the IBM Research Laboratory
in Haifa, where he works on simula-
tion-based verification. His research

interests include functional coverage, coverage-direct-
ed test generation, and high-level modeling for hard-
ware systems. Ziv has a BS in computer engineering
from the Technion, Israel Institute of Technology, and
an MS and a PhD in electrical engineering from Stan-
ford University.

Direct questions and comments about this article
to Michael Vinov, IBM Research Laboratory, Haifa
University Campus, Haifa 31905, Israel; vinov@il.
ibm.com.

93March–April 2004

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles

and conference papers available!

US$9 per article for members

US$19 for nonmembers

http://computer.org/publications/dlib/

	footer1:

