CIM

Signoff Criteria for Verification by Thinking Ahead

Nihit Chattar 24/11/2020

© 2020 Arm Limited (or its affiliates)

Agenda

- Requirements tracking
- Coverage and regression targets
- Top level targets
- Analysis and improvements
- Metrics and soak testing

Requirements Tracking

• Requirements are mandatory tasks

- Examples of Verification requirements:
 - Coverpoints
 - Assertions
 - Checks
 - Tests

Requirements Tracking

A requirement can be covered by multiple downstream requirements

✓ Complete implementation of requirements

✓ Requirements tracking - traceability flow for the completeness

Coverage and Regression Targets

- ✓ Stimulus Implemented with extension for coverage and bugs analysis
- ✓ Checkers Fully enabled
- ✓ Smoke suite Fully passing, coverage optimised
- ✓ Full regression
 - Includes stress testing
 - Bugs analysis extension
 - Coverage analysis extension
 - 100% passing
- ✓ Assertions No errors, warnings fully analysed

✓ Protocol checkers/VIPs for standard interfaces – No fails

Coverage and Regression Targets

- Code coverage
 - ✓ Line/branch 95% cover, 100% explained
 - ✓ Fsm/Condition High 90s, 100% explained
 - ✓ Toggle 95% cover, 100% explained
- Functional coverage
 - ✓ Tier 1 Fully covered
 - ✓ Tier 2 High 90s, 100% explained
 - ✓ Bugs analysis extension

Top Level Targets

- Additional Top-level regression targets:
 - ✓ Architectural checkers enabled and passing
 - ✓ Architecture Verification suite 100% passing
 - ✓ Device Verification suite 100% passing
 - ✓ Configuration testing (including extended configs)
- Additional System-level regression targets:
 - $\checkmark~$ OS compatibility and stress testing
 - ✓ System level profiling fully analysed
- ✓ Power aware DVS regression 100% passing (including extended configs)
- ✓ Power aware specific coverage 100%

Analysis and Improvements

Motivation :

- Random simulations are an effective way to find "hard to think of" bugs. However they tend to be very inefficient.
- Number of test runs required to hit coverage Trial and error technique which can be inefficient.
- Associated costs time and compute resources

- ✓ Regular analysis of bugs to identify test types most likely to hit issues.
- ✓ Use Machine learning tools to analyse and improve test suites for coverage

Analysis and Improvements

Example of ML tool –

- Takes test coverage database files (.ucdb files) as training data
- Measures probability of each functional coverage bin being hit by each test type
- Sorts and selects the test types most likely to hit multiple bins
- Finds new allocation of runs (seeds) between test types to hit same bins in least number of tests
- ✓ Have reached slightly higher coverage than training data using only <u>44%</u> of the tests

Regression	Average func. coverage	Number of tests
Using original weightings (training data)	77.68	5976
Using tool optimised weightings	77.73	2650

Green: Training data

Red: Tool Forecast

Metrics and Soak Testing

Report metrics for:

- ✓ Volume of Unit and Top-Level soak testing cycles
- ✓ Number and severity of bugs

Bug Rate Distributions

Development time

- ✓ Soak testing has met cycle targets with no failures
- ✓ Full bug tracking of all bugs (RTL + Verification)
- ✓ High severity RTL bugs are closed
- ✓ All confirmed bugs post LAC are presented for review and publication approval.

[*] Thảnk Yỏu						rn	Ó	
					+	+	+	
Merci								
谢谢								
ありがとう								
+ Gracias								
Kiitos								
감사합니다								
धन्यवाद								
ۺڬڔٙٵ								
ধন্যবাদ								
תודה								

© 2020 Arm Limited (or its affiliates)