
Incisive® Enterprise Specman Elite® Testbench

Tutorial

©1998-2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

This product contains third party software. Please refer to <install_dir>/doc/thirdpartyinfo/SPMNthirdpartyinfo.txt to review
copyright & licensing terms.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are attributed to
Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the corporate legal department at
the address shown above or call 800.862.4522. All other trademarks are the property of their respective holders.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered trademarks of
Open SystemC Initiative, Inc. in the United States and other countries and are used with permission.

Restricted Permission: This publication is protected by copyright law and international treaties and contains trade secrets
and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this publication, or any portion
of it, may result in civil and criminal penalties. Except as specified in this permission statement, this publication may not be
copied, reproduced, modified, published, uploaded, posted, transmitted, or distributed in any way, without prior written
permission from Cadence. Unless otherwise agreed to by Cadence in writing, this statement grants Cadence customers
permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its customer;
2. The publication may not be modified in any way;
3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement;
4. The information contained in this document cannot be used in the development of like products or software, whether

for internal or external use, and shall not be used for the benefit of any other party, whether or not for consideration

Disclaimer: Information in this publication is subject to change without notice and does not represent a commitment on the
part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained in this document.
Cadence does not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in FAR52.227-
14 and DFAR252.227-7013 et seq. or its successor.

Contents

1 Introduction .1-1

Tutorial Overview . 1-1

Tutorial Goals . 1-3

Accessing the Specman Software . 1-4

Setting up the Tutorial Environment . 1-4

Document Conventions . 1-5

2 Understanding the Environment .2-1

Goals for this Chapter . 2-1

What You Will Learn . 2-1

The Design Specifications . 2-1

The Interface Specifications . 2-3

The Functional Test Plan . 2-3

Overview of the Verification Environment . 2-4

3 Creating the CPU Instruction Structure .3-1

Goals for this Chapter . 3-1

What You Will Learn . 3-1

Capturing the Specifications . 3-2

Creating the List of Instructions . 3-7
Specman Tutorial iii

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Contents
4 Generating the First Test .4-1

Goals for this Chapter . 4-1

What You Will Learn . 4-1

Defining the Test Constraints . 4-2

Loading the Verification Environment . 4-4

Generating the Test . 4-6

Analyzing Generation . 4-9

5 Driving and Sampling the DUT .5-1

Goals for this Chapter . 5-1

What You Will Learn . 5-1

Defining the Protocols . 5-2

Running the Simulation . 5-5

6 Generating Constraint-Driven Tests .6-1

Goals for this Chapter . 6-1

What You Will Learn . 6-1

Defining Weights for Random Tests . 6-2

Generating Tests With a User-Specified Seed . 6-3

Generating Tests With a Random Seed . 6-5

7 Defining Coverage .7-1

Goals for this Chapter . 7-1

What You Will Learn . 7-1

Defining Coverage for the FSM . 7-2

Defining Coverage for the Generated Instructions . 7-3

Defining Coverage for the Corner Case . 7-4

8 Analyzing Coverage .8-1

Goals for this Chapter . 8-1

What You Will Learn . 8-1

Running Tests with Coverage Groups Defined . 8-2

Viewing State Machine Coverage . 8-3

Extending Coverage . 8-9

Viewing Coverage Per Instance . 8-12

Viewing Corner Case Coverage . 8-14
iv Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Contents
9 Writing a Corner Case Test .9-1

Goals for this Chapter . 9-1

What You Will Learn . 9-1

Increasing the Probability of Arithmetic Operations . 9-2

Linking JMPC Generation to the Carry Signal . 9-3

10 Creating Temporal and Data Checks .10-1

Goals for this Chapter . 10-1

What You Will Learn . 10-1

Creating the Temporal Checks . 10-2

Creating Data Checks . 10-4

Running the Simulation . 10-7

11 Analyzing and Bypassing Bugs .11-1

Goals for this Chapter . 11-1

What You Will Learn . 11-1

Displaying DUT Values . 11-2

Setting Breakpoints . 11-5

Stepping the Simulation . 11-5

Bypassing the Bug . 11-7

Tutorial Summary . 11-8

A Design Specifications for the CPU . A-1

CPU Instructions .A-1

CPU Interface .A-3

CPU Register List .A-3
Specman Tutorial v

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Contents
vi Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

1 Introduction

This chapter covers the following Specman tutorial concepts and tasks:

• “Tutorial Overview” on page 1-1

• “Tutorial Goals” on page 1-3

• “Setting up the Tutorial Environment” on page 1-4

• “Document Conventions” on page 1-5

Tutorial Overview
Incisive® Enterprise Specman Elite® Testbench provides benefits that result in:

• Reductions in the time and resources required for verification

• Improvements in product quality

The Specman system automates verification processes, provides functional coverage analysis, and raises
the level of abstraction for functional coverage analysis from the RTL to the architectural/specification
level. This means that you can:

• Easily capture your design specifications to set up an accurate and appropriate verification
environment

• Quickly and effectively create as many tests as you need

• Create self-checking modules that include protocols checking

• Accurately identify when your verification cycle is complete

The Specman system provides three main enabling technologies that enhance your productivity:
Specman Tutorial 1-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Introduction
Tutorial Overview
• Constraint-driven test generation—You control automatic test generation by capturing constraints
from the interface specifications and the functional test plan. Capturing the constraints is easy and
straightforward.

• Data and temporal checking—You can create self-checking modules that ensure data correctness
and temporal conformance. For data checking, you can use a reference model or a rule-based
approach.

• Functional coverage analysis—You avoid creating redundant tests that waste simulation cycles,
because you can measure the progress of your verification effort against a functional test plan.

Figure 1-1 shows the main component technologies of the Specman system and its interface with an
HDL simulator.

Figure 1-1 The Specman System Automates Verification

Specman verification system

Constraint-driven
test generation

Functional coverage
analysis

HDL simulator

HDL models Legacy code
(HDL)

Data and temporal
checking

Legacy code
(C language)

 Interface specification
(e language)

Functional test plan
(e language)
1-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Introduction
Tutorial Goals
Tutorial Goals
The goal of this tutorial is to give you first-hand experience in how the Specman system effectively
addresses functional verification challenges.

As you work through the tutorial, you follow the process described in Figure 1-2. The tutorial uses the
Specman system to create a verification environment for a simple CPU design.

Figure 1-2 Tutorial Verification Task Flow

Define the DUT
interfaces

Drive and sample the
DUT

Generate constraint-
driven tests

Define and analyze test
coverage

Create corner-case
tests

Create temporal and
data checks

Generate a simple test

Analyze and bypass
bugs

Design the verification
environment
Specman Tutorial 1-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Introduction
Accessing the Specman Software
Accessing the Specman Software
This tutorial assumes that you have access to the Specman software.

Setting up the Tutorial Environment
Setting up the tutorial environment consists of downloading the tutorial package that contains this PDF
and extracting the e files in the package to your Linux machine.

The e files are extracted to the following folders:

<extraction-directory>/docs/specman_tutorial.pdf
<extraction-directory>/cpu/e/gold
<extraction-directory>/cpu/e/src
<extraction-directory>/README

When the “e” directory is extracted, it should match the following listing.

gold:
cpu_bypass.e cpu_dut.e cpu_top.e
cpu_checker.e cpu_instr.e cpu_tst1.e
cpu_cover.e cpu_misc.e cpu_tst2.e
cpu_cover_extend.e cpu_refmodel.e cpu_tst3.e
cpu_drive.e cpu_smp.e

src:
cpu_bypass.e cpu_dut.e cpu_top.e
cpu_checker.e cpu_instr.e cpu_tst1.e
cpu_cover.e cpu_misc.e cpu_tst2.e
cpu_cover_extend.e cpu_refmodel.e cpu_tst3.e
cpu_drive.e cpu_smp.e

Note As you work through this tutorial, you will be modifying the files in the src directory. If you have
trouble making the modifications correctly, you can view or use the files in the gold directory. The files
in the gold directory are complete and correct.

Now that the files are installed, you are ready to proceed with the design verification task flow shown in
Figure 1-2 on page 1-3. To start the first step in that flow, turn to Chapter 2 “Understanding the
Environment”. In this chapter, you review the DUT specifications and functional test plan for the CPU
design and define the overall verification environment.
1-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Introduction
Document Conventions
Document Conventions
This tutorial uses the document conventions described in Table 1-1.

Table 1-1 Document Conventions

Visual Cue Meaning

courier Specman or HDL code. For example,

keep opcode in [ADD, ADDI];

courier bold Text that you need to type exactly as it appears to complete a
procedure or modify a file.

bold In text, bold indicates Specman keywords. For example, in the
phrase “the verilog trace statement,” verilog and trace are
keywords.

% In examples that show commands being entered, the % symbol
indicates the Linux prompt.

SN> In examples that show commands being entered in the Specman
system, SN> indicates the Specman prompt.
Specman Tutorial 1-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Introduction
Document Conventions
1-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

2 Understanding the Environment

Goals for this Chapter
This tutorial uses a simple CPU design to illustrate the benefits of using the Specman system for
functional verification. This chapter introduces the overall verification environment for the tutorial CPU
design, based on the design specifications, interface specifications, and the functional test plan.

What You Will Learn
Part of the productivity gain provided by the Specman system derives from the ease with which you can
capture the specifications and functional test plan in executable form. In this chapter, you become
familiar with the design specifications, the interface specifications, and the functional test plan for the
CPU design. You also become familiar with the overall CPU verification environment.

The following sections provide brief descriptions of the:

• Design specifications

• Interface specifications

• Functional test plan

• Overall verification environment

For more detailed information on the CPU instructions, the CPU interface, and the CPU’s internal
registers, see Appendix A “Design Specifications for the CPU”.

The Design Specifications
The device under test (DUT) is an 8-bit CPU with a reduced instruction set (Figure 2-1).
Specman Tutorial 2-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Understanding the Environment
The Design Specifications
Figure 2-1 CPU Block-Level Diagram

The state machine diagram for the CPU is shown in Figure 2-2. The second fetch cycle is only for
immediate instructions and for instructions that control execution flow.

Figure 2-2 CPU State Machine Diagram

There is a 1-bit signal associated with each state, exec, fetch2, fetch1, strt. If no reset occurs, the fetch1
signal must be asserted exactly one cycle after entering the execute state.

CPU

Fetch & Execute
State Machine

ALU

r0

r1

r2

r3

pc

pcs

8

clock

rst

data

Available Instructions

Arithmetic:
ADD, ADDI, SUB, SUBI

Logic:
AND, ANDI, XOR, XORI

Control Flow:
JMP, JMPC, CALL, RET

No-Operation:
NOP

opcode == {ADDI,
SUBI, ANDI, XORI,
JMP, JMPC, CALL}

Start

Fetch1

Execute

Fetch2
2-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Understanding the Environment
The Interface Specifications
The Interface Specifications
All instructions have a 4-bit opcode and two operands. The first operand specifies one of four 4-bit
registers internal to the CPU. The second operand depends on the type of instruction:

• Register instructions—The second operand specifies another one of the four internal registers.

Figure 2-3 Register Instruction

• Immediate instructions—The second operand is an 8-bit value. When the opcode is of type JMP,
JMPC, or CALL, this operand must be a 4-bit memory location.

Figure 2-4 Immediate Instruction

The Functional Test Plan
We need to create a series of tests that will result in adequate test coverage for most aspects of the
design, including some rare corner cases. There will be three tests in this series.

Test 1

Test Objective

A simple go/no-go confirming that the verification environment is working properly.

Test Specifications

• Generate five instructions.

• Use either the ADD or ADDI opcode.

byte 1

bit 7 6 5 4 3 2 1 0

opcode op1 op2

byte 1 2

bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

opcode op1 don’t
care

op2
Specman Tutorial 2-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Understanding the Environment
Test 2
• Set op1 to REG0.

• Set op2 either to REG1 for a register instruction or to value 0x5 for an immediate instruction.

Test 2

Test Objective

Multiple random variations on a test gains high percentage coverage on commonly executed
instructions.

Test Specifications

• Use constraints to direct random testing towards the more common arithmetic and logic operations
rather than the control flow operations.

• Run the test many times, each time with a different random seed.

Test 3

Test Objective

Generation of a corner case test scenario that exercises JMPC opcode when the carry bit is asserted.
Note that it is difficult to efficiently cover this scenario by purely random or purely directed tests.

Test Specifications

• Generate many arithmetic opcodes to increase the chances of carry bit assertion.

• Monitor the DUT and use on-the-fly generation to generate many JMPC opcodes when the carry
signal is high.

Overview of the Verification Environment
The overall test strategy, shown in Figure 2-5, includes the following objectives:

• Constrain the Specman test generator to creation of valid CPU instructions.

• Compare the program counters in the CPU to those in a reference model.

• Define temporal rules to check the DUT behavior.

• Define coverage points for state machine transitions and instructions.
2-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Understanding the Environment
Overview of the Verification Environment
Figure 2-5 Design Verification Environment Block-Level Diagram

Because the focus of this tutorial is the Specman system, we do not include an HDL simulator. Rather
than instantiating an HDL DUT, we model the DUT in e and simulate it in Specman. The process you
use to drive and sample the DUT in e is exactly the same as a DUT in HDL.

Now you are ready to create the first piece of the verification environment, the CPU instruction stream.

Temporal
Rules

CPU

struct cpu_refmodel_s {
regs[4]: list of byte;
pc : byte;
stack : list of byte;

fetch(r:cpu_reg_t): byte is {
return(regs[r.as_a(int)];

};

update(r:cpu_reg_t, val:byte) is {
...

Reference Model

Device Under Test

Coverage Reports

Instructions Checker

Functional
Coverage

Points

Pass / Fail

Constraints

Coverage

Test Generator
Specman Tutorial 2-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Understanding the Environment
Overview of the Verification Environment
2-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

3 Creating the CPU Instruction
Structure

Goals for this Chapter
The first task in the verification process is to set up the verification environment. In this chapter you start
creating the environment by defining the inputs to the design, the CPU instructions.

What You Will Learn
In this chapter you learn how to create a data structure and define specification constraints that enable
the Specman system to generate a legal instruction stream. By the end of this chapter, you will have
created the core structure for the CPU instructions. This core structure will be used and extended in
subsequent chapters to create the tests.

As you work through this chapter, you gain experience with one of the Specman system’s enabling
features—easy specification capture. Using a few constructs from the e language, you define the legal
CPU instructions exactly as they are described in the interface specifications.

This chapter introduces the e constructs shown in Table 3-1.

Table 3-1 New Constructs Used in this Chapter

Construct How the Construct is Used

<'…'> Marks the beginning and end of e code.

struct Creates a data structure to hold the CPU instructions.

extend Adds the data structure containing the CPU instructions to the
Specman system of data structures.
Specman Tutorial 3-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Capturing the Specifications
To create the CPU instruction structure, you must:

• Capture the interface specifications

• Create a list of instructions

The following sections explain how to perform these tasks.

Capturing the Specifications
In this task, you create the data structure for the instruction stream and constrain the test generator to
generate only legal CPU instructions. Individual tests that you create later can constrain the generator
even further to test some particular functionality of the CPU.

For a complete description of the legal CPU instructions, refer to Appendix A “Design Specifications for
the CPU”.

Procedure
To capture the design specifications in e:

1. Make a new working directory and copy the src/cpu_instr.e file to the working directory.

2. Open the cpu_instr.e file in an editor.

The first part of the file has a summary of the design specifications for the CPU instructions.

list of Creates an array or list without having to keep track of pointers or
allocate memory.

type Defines an enumerated data type for the CPU instructions.

bits Defines the width of an enumerated type.

keep Specifies rules or constraints for the instruction fields.

when Implements conditional constraints on the possible values of the
instruction fields.

Table 3-1 New Constructs Used in this Chapter (continued)

Construct How the Construct is Used
3-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Procedure
3. Find the portion of the file that starts with the <' e code delineator and review the constructs:

cpu_instr.e
Basic structure of CPU instructions
Specman Tutorial
Cadence Design Systems, Inc.
12-1-2002
This module defines the basic structure of CPU instructions,
according to the design and interface specifications.

All instructions are defined as:
Opcode Operand1 Operand2

There are 2 types of instructions:

Register Instruction:
bit | 7 6 5 4 | 3 2 | 1 0 |

| opcode | op1 | op2 |
(reg)

:
Immediate Instruction:
byte | 1 | 2 |
bit | 7 6 5 4 | 3 2 | 1 0 | 7 6 5 4 3 2 1 0 |

| opcode | op1 | don’t | op2 |
| care |

Register instructions are:
ADD, SUB, AND, XOR, RET, NOP

Immediate instructions are:
ADDI, SUBI, ANDI, XORI, JMP, JMPC, CALL

Registers are REG0, REG1, REG2, REG3

File name
Title

Project
Developer

Date created
Description
Specman Tutorial 3-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Procedure
4. Define two fields in the cpu_instr_s structure, one to hold the opcode and one to hold the first
operand.

Use the enumerated types, cpu_opcode_t and cpu_reg_t, to define the types of these fields. To
indicate that the Specman system must drive the values generated for these fields into the DUT,
place a % character in front of the field name. You will see how this % character facilitates packing
automation in Chapter 5 “Driving and Sampling the DUT”.

<'
type cpu_opcode_t: [// Opcodes

ADD, ADDI, SUB, SUBI,
AND, ANDI, XOR, XORI,
JMP, JMPC, CALL, RET,
NOP

] (bits: 4);

type cpu_reg_t: [// Register names
REG0, REG1, REG2, REG3

] (bits:2);

struct cpu_instr_s {
//defines opcode, operand 1 and instruction kind

// defines 2nd op of reg instruction

// defines 2nd op of imm instruction

// defines legal opcodes for reg instr

// defines legal opcodes for imm instr

// ensures 4-bit addressing scheme

};

extend sys {
// creates the stream of instructions

};

defines the legal
opcodes as an

enumerated type

defines the
internal registers

when complete,
this structure

defines a valid
CPU instruction

// indicates that
rest of line is a

comment

when complete,
this construct

adds the CPU
instruction set to

the Specman
system
3-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Procedure
The structure definition should now look like this:

5. Define a field for the second operand.

The second operand is either a 2-bit register or an 8-bit memory location, depending on the kind of
instruction, so you need to define a single field (kind) that specifies the two kinds of instructions.
Because the generated values for kind are not driven into the design, do not put a % in front of the
field name.

6. Define the conditions under which the second operand is a register and those under which it is a byte
of data.

You can use the when construct to do this.

struct cpu_instr_s {
//defines opcode, operand 1 and instruction kind
%opcode :cpu_opcode_t;
%op1 :cpu_reg_t;

// defines 2nd op of reg instruction
.
.
.
};

add these two
lines into the file

struct cpu_instr_s {
//defines opcode, operand 1 and instruction kind
%opcode :cpu_opcode_t;
%op1 :cpu_reg_t;
kind :[imm, reg];

// defines 2nd op of reg instruction
.
.
.
};

add this line to
define the field

‘kind’ and define
an enumerated

type at the
same time
Specman Tutorial 3-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Procedure
7. Constrain the opcodes for immediate instructions and register instructions to the proper values.

Whenever the opcode is one of the register opcodes, then the kind field must be reg. Whenever the
opcode is one of the immediate opcodes, then the kind field must be imm. You can use the keep
construct with the implication operator => to easily create these complex constraints.

struct cpu_instr_s {
//defines opcode, operand 1 and instruction kind
%opcode :cpu_opcode_t;
%op1 :cpu_reg_t;
kind :[imm, reg];

// defines 2nd op of reg instruction
when reg cpu_instr_s {

%op2 :cpu_reg_t;
};

// defines 2nd op of imm instruction
when imm cpu_instr_s {

%op2 :byte;
};

.

.

.
};
3-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Creating the List of Instructions
8. Constrain the second operand to a valid memory location (less than 16) when the instruction is
immediate.

You can use the when construct together with keep and => to create this constraint.

9. Save the cpu_instr.e file.

Now you have finished defining a legal CPU instruction.

Creating the List of Instructions
In this task, you create a CPU instruction structure by extending the Specman system (sys) to include a
list of CPU instructions. sys is a built-in Specman structure that defines a generic verification
environment.

struct cpu_instr_s {
.
.
.

// defines legal opcodes for reg instr
keep opcode in [ADD, SUB, AND, XOR, RET, NOP]

=> kind == reg;

// defines legal opcodes for imm instr
keep opcode in [ADDI, SUBI, ANDI, XORI, JMP, JMPC, CALL]

=> kind == imm;

// ensures 4-bit addressing scheme

};

struct cpu_instr_s {
.
.
.

// ensures 4-bit addressing scheme
when imm cpu_instr_s {

keep read_only(opcode in [JMP, JMPC, CALL]) => op2 < 16;
};

};
Specman Tutorial 3-7

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating the CPU Instruction Structure
Procedure
Procedure
To create the list of instructions:

1. Within the same cpu_instr.e file, find the lines of code that extend the Specman system:

2. Create a field for the instruction data of type cpu_instr_s.

When defining a field that is an array or a list, you must precede the field type with the keyword list
of.

The exclamation point preceding the field name instrs tells the Specman system to create an empty
data structure to hold the instructions. Then, each test tells the system when to generate values for
the list, either before simulation (pre-run generation) or during simulation (on-the-fly generation).
In this tutorial you use both types of generation.

3. Save the cpu_instr.e file.

Now you have created the core definition of the CPU instructions. You are ready to extend this
definition to create the first test.

extend sys {
// creates a stream of instructions

};

extend sys {
// creates a stream of instructions
!instrs: list of cpu_instr_s;

};
3-8 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

4 Generating the First Test

Goals for this Chapter
In this chapter, you will generate the first test described in “The Functional Test Plan” on page 2-3. This
first test is a simple test to confirm that the verification environment is set up correctly and that you can
generate valid instructions for the CPU model.

You will also get a look at the Data Browser and the Generation Debugger GUIs, which are features that
provide visibility into the data structure and the generation order of the e objects.

What You Will Learn
In this chapter, you learn how to create different types of tests easily by specifying test constraints in the
Specman system. Test constraints direct the Specman generator to a specific test described in the
functional test plan. This chapter illustrates how the Specman system can quickly generate an instruction
stream. In the next chapter, you will learn how to drive this instruction stream to verify the DUT.

As you work through this chapter to create the first test, you gain experience with the following enabling
features of the Specman system:

• Extensibility—This enables adding definitions, constraints, and methods to a struct in order to change
or extend its original behavior without altering the original definition.

• Constraint solver—This is the core technology that intelligently resolves all specification constraints
and test constraints and then generates the desired test.

This chapter shows new uses of the e constructs introduced in Chapter 3 “Creating the CPU Instruction
Structure”. It also introduces the Specman console menu commands shown in Table 4-1.
Specman Tutorial 4-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Defining the Test Constraints

Tip In most cases, the menu commands presented in this tutorial can be issued by clicking a button.
For example, clicking the Load e source file button is the same as clicking File ›› Load e File.
Similarly, you can click the Show loaded modules button instead of clicking Verification ›› e
Modules. To see what a given button does, hover your mouse over the icon.

The steps required to generate the first test for the CPU model are:

1. Defining the test constraints.

2. Loading the verification environment into the Specman system.

3. Generating the test.

The following sections explain how to perform these steps.

Defining the Test Constraints
The Functional Test Plan for the CPU design (see “The Functional Test Plan” on page 2-3) describes the
objectives and specifications for this first test.

Test Objective
The objective is to confirm that the verification environment is working properly.

Table 4-1 New Constructs and SimVision Menu Commands Used in this Chapter

Construct How the Construct is Used

extend Adds constraints to the sys and cpu_instr_s structs defined in
Chapter 3 “Creating the CPU Instruction Structure”.

keep Limits the possible values of the instruction fields and the number
of instructions generated for this test.

when Defines conditional constraints.

Command How the Command is Used

File ›› Load e File Loads uncompiled e modules into the Specman system.

Verification ›› e Modules Lists the e modules you have loaded into the Specman system.

Verification ›› Test Generates a test based on the constraints you specify.

Verification ›› Data Browser Opens the Data Browser GUI, in which you view the hierarchy of
generated objects and their values.
4-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Test Specifications
Test Specifications
To meet the test objective, the test should:

• Generate five instructions.

• Use either the ADD or ADDI opcode.

• Set op1 to REG0.

• Set op2 either to REG1 for a register instruction or to value 0x5 for an immediate instruction.

Procedure
To capture the test constraints in e:

1. Copy the src/cpu_tst1.e to the working directory and open the cpu_tst1.e file in an editor.

2. Find the portion of the file that looks like this:

3. Add lines below the comments as follows to constrain the opcode, operands, and number of
instructions:

<'
import cpu_top;

extend cpu_instr_s {
// test constraints

};

extend sys {
// generate 5 instructions

};
.
.
.

Specman Tutorial 4-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Loading the Verification Environment
4. Save the cpu_tst1.e file.

Loading the Verification Environment
To run the first test, you need the following files:

• cpu_tst1.e—imports (includes) cpu_top.e and contains the test constraints for the first test.

• cpu_top.e—imports cpu_instr.e and cpu_misc.e.

• cpu_instr.e—contains the definitions and specification constraints for CPU instructions.

• cpu_misc.e—configures settings for print and coverage display.

These files are called modules in the Specman system. Before the system can generate the test, you must
load all the modules.

Procedure
To load all modules:

1. Copy the src/cpu_top.e file to the working directory.

2. Copy the src/cpu_misc.e file to the working directory.

The working directory should now contain four files: cpu_instr.e, cpu_misc.e, cpu_top.e, and
cpu_tst1.e

constrains the
opcode and

operands

constrains the
number of

instructions

<'
extend cpu_instr_s {

//test constraints
keep opcode in [ADD, ADDI];
keep op1 == REG0;
when reg cpu_instr_s { keep op2 == REG1; };
when imm cpu_instr_s { keep op2 == 0x5; };

};

extend sys {
//generate 5 instructions
keep instrs.size() == 5;

};
4-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Procedure
3. From the working directory, type the following command at the system prompt to invoke Specman’s
graphical user interface, SimVision™:

% specman -gui

Figure 4-1 SimVision’s Specman Tab

Note If your screen looks different from is shown in this tutorial, it is probably because you are
using a different version of Specman than that shown in this tutorial.

4. Click File ›› Load e File.

The “Select A File” dialog box appears.

5. In the “Select A File” dialog box, double-click cpu_tst1.e in the list of files.

Specman automatically loads all four files contained in your working directory. In SimVision, you
should see a message that looks as follows:

Loading cpu_instr.e (imported by cpu_top.e) ...
Loading cpu_misc.e (imported by cpu_top.e) ...
Loading cpu_top.e (imported by cpu_tst1.e) ...
Loading cpu_tst1.e ...
Specman Tutorial 4-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Generating the Test
Tip If the cpu_tst1.e file name does not appear in the dialog box, you probably did not invoke Specman
from the working directory. Use the list of directories in the dialog box to navigate to the working
directory.

Tip If the cpu_tst1.e file does not load completely because of a syntax error, use a diff utility to
compare your version of cpu_tst1.e to cpu/gold/cpu_tst1.e. Fix the error and click the Reload
button. Alternatively, you can click the blue hypertext link in the SimVision, and the error location
will be displayed in the Debugger window.

6. To see a list of loaded modules, click Verification ›› e Modules.

There should be four modules loaded:

cpu_instr
cpu_misc
cpu_top
cpu_tst1

7. In the “Modules” window, click File ›› Close to close the window after you verify that all four
modules are loaded.

Generating the Test
To generate the test:

1. Click Verification ›› Generation Debugger ›› Collect Gen.

We perform this step in order to be able to view the generation order in the next procedure,
“Analyzing Generation”. Using Collect Gen is necessary when you want to use the Generation
Debugger, but is not required for most Specman test runs.

2. Click Verification ›› Test.

You should see the following output in console window:

Doing setup ...
Generating the test with IntelliGen using seed 1...

Starting the test ...
Running the test ...
No actual running requested.
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.

3. Click Verification ›› Data Browser ›› Show Data Sys.

The Data Browser is launched.
4-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Generating the Test
Tip Remember that if your screen shows slightly different information than that shown in the figure,
it is probably because you are using a Specman version that is different from the one used in the
tutorial.

4. Click the 5 items link on the instrs line in the left pane.

The list of five generated instructions appears in the top right pane.
Specman Tutorial 4-7

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Generating the Test
5. Click on the “+” that appears in front of the 5 items link on the instrs line in the left pane.

The five instructions are listed.

6. Then click on the first reg instruction (instrs[2] = reg cpu_instr_s).

The generated values for the fields of the first reg instruction object appear in the right pane.
4-8 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Analyzing Generation
Tip If the results you see are significantly different from the results shown here, use a diff utility to
compare your version of the e files to the files in the gold directory.

7. Click each of the other instrs[n] lines in the left panel and review their contents in the right panel to
confirm that the instructions follow both the general constraints for CPU instructions and the
constraints for this particular test.

8. Click File ›› Close or the “Close Window” button to close the Data Browser window.

Based on the definitions, specification constraints, and test constraints that you have provided, the
Specman generator quickly generated the desired instruction stream.

Analyzing Generation
To open the Generation Debugger and view the generation order:

1. Click Verification ›› Generation Debugger ›› Show Gen.

The Generation Debugger opens.
Specman Tutorial 4-9

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Analyzing Generation
The Gen Debugger GUI shows information organized around the generation process—that is, the
solving of connected field sets (CFSs). A CFS is a set of variables in a generation action that are
connected by a set of constraints.

2. In the top left-hand “Generation Process Tree,” click the + symbol by one of the CFS lines to view
the “solving steps”—that is, the reduction and assignment steps—performed for that CFS.

The following figure shows the reduction and assignment steps for the CFS sys-@1.instrs[2].
4-10 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Analyzing Generation
3. Click on one of the solving steps to make it the focus of the Generation Debugger.

In the following figure, the solving step op1->[REG0] is selected. As you can see, the main section
of the Generation Debugger now displays information about this particular solving step, including a
text description of the step.

The information in the “Variables” table tells you that, during this reduction step, Specman’s
generator initially assigned the values REG0, REG1, REG2, and REG3 to op1. These initial values
consist of all the legal values for the internal registers (defined in the cpu_instr.e module). The
generator then considered the keep op1 == REG0 constraint that you created for the cpu_tst1.e
module. Because of this constraint, the generator reduced the range of values available for op1 to
REG0.
Specman Tutorial 4-11

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Analyzing Generation
4. Now click on the keep op1 == REG0 constraint in the “Constraints” pane (the top far-right-hand
pane).

Notice that new information and tabs appears in the “General Info” pane. The panes in the
Generation Debugger are interlinked—when you click on an item, the “General Info” pane switches
to information about that item.
4-12 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Analyzing Generation
One of the tabs that is displayed for constraints is the “Source” tab. The following figure shows the
“Source” tab open, displaying the code for the keep op1 == REG0 constraint.

These simple examples illustrate some of the ways you can use the Generation Debugger to
investigate the steps taken during generation. When you start coding more complicated constraints,
you will find the Generation Debugger to be an invaluable tool for solving issues regarding your
generation code.
Specman Tutorial 4-13

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating the First Test
Analyzing Generation
5. Click File ›› Close or the “Close Window” button to close Generation Debugger.

This procedure has introduced you to the Generation Debugger analysis tool and how you can use it to
investigate particular generation results.

Now you are ready to drive this instruction stream into the DUT and run simulation.
4-14 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

5 Driving and Sampling the DUT

Goals for this Chapter
In this chapter, you will drive the DUT with the instruction stream you generated in the last chapter.

In a typical verification environment, where the DUT is modeled in an HDL, you need to link the
Specman system with an HDL simulator before running simulation. To streamline this tutorial, we have
modeled the DUT in e.

What You Will Learn
In this chapter, you learn how to describe in e the protocols used to drive test data into the DUT.
Although this tutorial does not use an HDL simulator, the process of driving and sampling a DUT
written in HDL is the same as the process for a DUT written in e.

As you work through this chapter, you gain experience with these features of the Specman verification
system:

• Time consuming methods (TCMs)—You can write procedures in e that are synchronized to other
TCMs or to an HDL clock. You can use these procedures to drive and sample test data.

• DUT signal access—You can easily access signals and variables in the DUT, either for driving and
sampling test data or for synchronizing TCMs.

• Simulator interface automation—You can drive and sample a DUT without having to write PLI
(Verilog simulators) or FLI/CLI (VHDL simulators) code. The Specman system automatically creates
the necessary PLI/FLI calls for you.

This chapter introduces the e constructs shown in Table 5-1.
Specman Tutorial 5-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Defining the Protocols
The steps for driving and sampling the DUT are:

1. Defining the protocols.

2. Running the simulation.

The following sections describe how to perform these steps.

Defining the Protocols
There are two protocols to define for the CPU:

• Reset protocol—drives the rst signal into the DUT.

• Drive instructions protocol—drives instructions into the DUT according to the correct protocol
indicated by the fetch1 and fetch2 signals.

The drive instructions protocol has one TCM for pre-run generation, where the complete list of
instructions is generated and then simulation starts. There is another TCM for on-the-fly generation,
where signals in the DUT are sampled before the instruction is generated. The test in this chapter uses
the simple methodology of pre-run generation, while subsequent tests in this tutorial use the more
powerful on-the-fly generation.

Table 5-1 New Constructs Used in this Chapter

Construct How the Construct is Used

emit Triggers a named event from within a TCM.

@ Synchronizes the TCMs with an event.

event Creates a temporal object, in this case a clock, that is used to
synchronize the TCMs.

port$ Accesses the value of a signal in the DUT via an e port.

method () is… Creates a procedure (method) that is a member of a struct and
manipulates the fields of that struct. Methods can execute in a
single point of time, or they can be time consuming methods
(TCMs).

pack () Converts data from higher level e structs and fields into the bit or
byte representation expected by the DUT.

wait Suspends action in a TCM until the expression is true.
5-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Defining the Protocols
The TCMs required to drive the CPU are described briefly in Table 5-2. A complete description of one
of the TCMs follows the table. You can also view the cpu_drive.e file in the src directory, if you want to
see the complete description of the other TCMs in e.

Figure 5-1 shows the e code for the drive_one_instr () TCM. The CPU architecture requires that tests
drive and sample the DUT on the falling edge of the clock. Therefore, all TCMs are synchronized to
cpuclk, which is defined as follows:

extend sys {
event cpuclk is (fall(smp.clk_p$)@sys.any);

};

Table 5-2 TCMs Required to Drive the CPU

Name Function

drive_cpu() Calls reset_cpu (). Then, depending on whether the list of
CPU instructions is empty or not, it calls
gen_and_drive_instrs () or drive_pregen_instrs ().

reset_cpu() Drives the rst signal in the DUT to low for one cycle, to high
for five cycles, and then to low.

gen_and_drive_instrs() Generates the next instruction, and then calls
drive_one_instr ().

drive_pregen_instrs() Calls drive_one_instr () for each generated instruction.

drive_one_instr() Sends the instruction to the DUT. If the instruction is an
immediate instruction, it also waits for the fetch2 signal to
rise, and then sends the second byte of data. Last, it waits for
the exec signal to rise.
Specman Tutorial 5-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Defining the Protocols
Figure 5-1 The drive_one_instr () TCM

The assignment statements in Figure 5-1 show how to drive and sample signals in an HDL model. Each
“port$” construct—for example, “smp.data_p$”—represents the value sampled by an e port that is
connected to an HDL signal.

The start_drv_DUT event emitted by drive_one_instr is not used by any of the TCMs that drive the
CPU. You will use it in a later chapter to trigger functional coverage analysis.

The last line shown in Figure 5-1 executes the reference model and is commented out at the moment.
You will use it in a later chapter to trigger data checking.

The pack() function is a Specman built-in function that facilitates the conversion from higher level data
structure to the bit stream required by the DUT. In Chapter 3 “Creating the CPU Instruction Structure”,
you used the % character to identify the fields that should be driven into the DUT. The pack() function
intelligently and automatically performs the conversion, as shown in Figure 5-2.

drive_one_instr(instr: cpu_instr_s) @sys.cpuclk is {
var fill0 : uint(bits : 2) = 0b00;

wait until rise(smp.fetch1_p$);

emit instr.start_drv_DUT;

if instr.kind == reg then {
smp.data_p$ = pack(packing.high, instr);

} else {
// immediate instruction

smp.data_p$ = pack(packing.high, instr.opcode,
instr.op1, fill0);

wait until rise(smp.fetch2_p$);
smp.data_p$ = pack(packing.high,

instr.as_a(imm cpu_instr_s).op2));
};

wait until rise(smp.exec_p$);

// execute instr in refmodel
// sys.cpu_refmodel.execute(instr, sys.cpu_dut);
5-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Running the Simulation
Figure 5-2 A Register Instruction as Received by the DUT

Running the Simulation
This procedure, which involves loading the appropriate files and clicking the Test button, is very similar
to the procedure you used in the last chapter to generate the first test.

The difference is that this time you are including the DUT (contained in cpu_dut.e) and TCMs that drive
it (contained in cpu_drive.e).

Procedure
Tip If you have exited SimVision, you must reinvoke it and load cpu_tst1.e again. To do so, enter the

specman -gui command at the Linux prompt, click File ›› Load e Files, and select cpu_tst1.e.

To run the simulation:

1. Copy the following files to the working directory:

src/cpu_dut.e
src/cpu_drive.e
src/cpu_smp.e

2. Open the working directory’s copy of the cpu_top.e file in an editor.

The instruction struct with three fields:

opcode == ADD

op1 == REG0

0

0 0 0

00

000 0 0 10

The instruction packed into a bit stream, using the packing.high ordering

opcode op1

list of bit [7] list of bit [0]

0

op2

op2 == REG1 10
Specman Tutorial 5-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Procedure
3. Find the lines in the file that look like this:

4. Remove the comment characters in front of the import line so the lines look like this:

5. Save the cpu_top.e file.

6. Because you will not be using the Generation Debugger in the remainder of this tutorial, enter the
following command in the Specman> command line in the SimVision window:

collect generation off

7. Click File ›› Reload e Files to reload the files for test 1.

Because you activated the “import cpu_smp, cpu_dut, cpu_drive” line by removing the comment
markers from that line, those two modules will be loaded along with the modules that were loaded
in the previous procedure.

Tip If you see a message such as

*** Error: No match for 'cpu_dut.e'

you need to check whether the working directory contains the following files:

Add the missing file and then reload the modules.

Tip If some of the modules are missing, first check whether you are loading the cpu_top.e file that you
just modified. The modified cpu_top.e file must be in the working directory. Once the modified
cpu_top.e file is in the working directory, click Verification ›› Restore Specman
State ›› .Restore to Last State. This action should remove all the currently loaded modules from
the session. Then click File ›› Load e File and double-click cpu_tst1.e in the “Select A File” dialog
box.

cpu_instr.e cpu_smp.e

cpu_misc.e cpu_top.e

cpu_dut.e cpu_tst1.e

cpu_drive.e

// Add dut and drive:
//import cpu_smp, cpu_dut, cpu_drive;

// Add dut and drive:
import cpu_smp, cpu_dut, cpu_drive;
5-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Procedure
8. Click Verification ›› Test to run the simulation.

You should see the following messages (or something similar) in the Specman console.

Doing setup…
Generating the test with IntelliGen using seed 1…

Starting the test…
Running the test…
…
DUT executing instr 0 : ADDI REG0x0, @0x05
DUT executing instr 1 : ADD REG0x0, REG0x1
DUT executing instr 2 : ADD REG0x0, REG0x1
DUT executing instr 3 : ADDI REG0x0, @0x05
DUT executing instr 4 : ADDI REG0x0, @0x05
Calling stop_run() from at line 101 in @cpu_drive.
Last specman tick - stop_run() was called
Normal stop - stop_run() is completed
Checking the test…
Checking is complete - 0 DUT errors, 0 DUT warnings.

You can see from the output that five instructions were executed and no errors were found. It looks like
the verification environment is working properly, so you are ready to generate a larger number of tests.
Specman Tutorial 5-7

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Driving and Sampling the DUT
Procedure
5-8 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

6 Generating Constraint-Driven
Tests

Goals for this Chapter
In this chapter, you will run the second test described in “The Functional Test Plan” on page 2-3. To meet
the objective of the second test, you must run the same test multiple times using constraints to direct
random testing towards the more common operations of the CPU. Through this automatic test
generation, we hope to gain high test coverage for the CPU instruction inputs.

What You Will Learn
In this chapter, you learn how to quickly generate different sets of tests by simply changing the seed used
for constraint-driven test generation. You also learn how to use weights to control the distribution of the
generated values to focus the testing on the common CPU instructions.

As you work through this chapter, you gain experience with two of the Specman verification system’s
enabling features:

• Directed-random test generation—This feature lets you apply constraints to focus random test
generation on areas of the design that need to be exercised the most.

• Random seed generation—Changing the seed used for random generation enables the Specman
system to quickly generate a whole new set of tests.

This chapter introduces the e constructs and SimVision menu commands shown in Table 6-1.
Specman Tutorial 6-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating Constraint-Driven Tests
Defining Weights for Random Tests

The steps for generating random tests are:

1. Defining weights for random tests.

2. Generating and running tests with a user-specified seed.

3. Generating and running tests with a random seed.

The following sections describe these tasks in detail.

Defining Weights for Random Tests
Because of the way that CPUs are typically used, arithmetic and logical operations comprise a high
percentage of the CPU instructions. You can use the select construct with keep soft to require the
Specman system to generate a higher percentage of instructions for arithmetic and logical operations
than for control flow.

Procedure
To see how weighted constraints are created in e:

1. Copy the src/cpu_tst2.e file to the working directory.

Table 6-1 New Constructs and SimVision Menu Commands Used in this Chapter

Construct How the Construct is Used

keep soft Specifies a soft constraint that is kept only if it does not
conflict with other hard keep constraints.

select Used with keep soft to control the distribution of the
generated values.

SimVision Command How the Command is Used

Verification ›› Specman Configuration Used to access the Generation tab of the Specman
Configuration Options window for creating a
user-defined seed for random test generation.

Verification ›› Save Specman State Saves the current test environment, including the random
seed, to an .esv file.

You can load this file with the Verification ›› Restore
Specman State command.

Verification ›› Test with Random Seed Generates a set of tests with a new random seed.
6-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating Constraint-Driven Tests
Generating Tests With a User-Specified Seed
2. Open the cpu_tst2.e file in an editor.

3. Find the portion of the file that looks as follows and review the keep soft constraint.

Generating Tests With a User-Specified Seed
You can specify the random seed that the Specman system uses to generate tests.

Procedure
This procedure shows how to create a random seed:

1. In SimVision, click Verification ›› Restore Specman State ›› Restore to Last State to remove all
of the e modules from the current session.

2. Click File ›› Load e File. Then double-click the cpu_tst2.e file.

The Specman system loads the cpu_tst2.e file along with its imported modules.

3. Click Verification ›› Specman Configuration.

The Specman Configuration Options window opens.

4. Click the Generation tab and then enter a number of your choice in the Seed text box.

5. Click OK to save the settings and close the window.

6. In SimVision, click Verification ›› Test.

The Specman system runs the test with the seed value you entered above, and reports the results.

<'
import cpu_top;

extend cpu_instr_s {
keep soft opcode == select {

10 : [JMP, JMPC, CALL, RET, NOP];
30 : [ADD, ADDI, SUB, SUBI];
30 : [AND, ANDI, XOR, XORI];

};
};

'>

puts equal weight
on arithmetic and
logical operations

and less weight
on control flow

operations
Specman Tutorial 6-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating Constraint-Driven Tests
Procedure
7. Click Verification ›› Data Browser ›› Show Data Sys.

The Data Browser window appears.

8. Click the blue x items link following “instrs =” in the left pane (where x is the number of instruction
instances that were generated).

Instructions are listed in the top right pane.

You should see an approximately equal distribution of arithmetic and logical operations, and about
one-third as many control flow operations as there are either arithmetic or logical operations. That
is, control flow, arithmetic, and logic operations are generated in a ratio of about 10:30:30. The
more instruction instances are generated, the closer the distribution will be to the ratio specified in
the keep soft opcode == select constraint.
6-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating Constraint-Driven Tests
Generating Tests With a Random Seed
Generating Tests With a Random Seed
You can require the Specman system to generate a random seed.

Procedure
To run a test using a Specman-generated random seed:

1. In SimVision, click File ›› Reload e Files.

2. Click Verification ›› Test with Random Seed.

The Specman system runs the test with the random seed shown in the Specman console window and
reports the results.

3. Review the results in the Data Browser, as in the previous procedure.

You should again see an approximately equal distribution of arithmetic and logical operations, and
about one-third as many control flow operations as there are either arithmetic or logical operations.
The results should be different from the previous run.

4. Optionally you can repeat steps 1-3 several times to confirm that you see different results each time.

Tip If you see similar results in subsequent runs, it is likely that you forgot to reload the design before
running the test. If you do not reload the design, the test is run with the current seed.

You can see that using different random seeds lets you easily generate many tests. Quickly analyzing the
results of all these tests would be difficult without Specman’s coverage analysis technology. The next
two chapters show how to use coverage analysis to accurately measure the progress of your verification
effort.
Specman Tutorial 6-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Generating Constraint-Driven Tests
Procedure
6-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

7 Defining Coverage

Goals for this Chapter
You can avoid redundant testing by measuring the progress of the verification effort with coverage
statistics for your tests. This chapter explains how to define the test coverage statistics you want to
collect.

What You Will Learn
In this chapter, you learn how to define which coverage information you want to collect for the DUT
internal states, for the instruction stream, and for an intersection of DUT states and the instruction
stream.

As you work through this chapter, you gain experience with another one of the Specman verification
system’s enabling features—the Functional Coverage Analyzer. The Specman coverage analysis
feature lets you define exactly what functionality of the device you want to monitor and report. With
coverage analysis, you can see whether generated tests meet the goals set in the functional test plan and
whether these tests continue to be sufficient as the design develops, the design specifications change,
and bug fixes are implemented.

This chapter introduces the e constructs shown in Table 7-1.

Table 7-1 New Constructs Used in this Chapter

Construct How the Construct is Used

event Defines a condition that triggers sampling of coverage data.

cover Defines a group of data collection items.

item Identifies an object to be sampled.
Specman Tutorial 7-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Defining Coverage
Defining Coverage for the FSM
The three types of coverage data that you might want to collect are:

• Coverage data for the finite state machine (FSM).

• Coverage data for the generated instructions.

• Coverage data for the corner case.

The following sections describe how to define coverage for these three types of data.

Defining Coverage for the FSM
You can use the constructs shown in Table 7-1 to define coverage for the FSM:

• State machine register

• State machine transition

Procedure
To define coverage for the FSM:

1. Copy the src/cpu_cover.e file to the working directory and open cpu_cover.e in an editor.

2. Find the portion of the file that looks like the excerpt below and review the declaration that defines
the sampling event for the FSM:

transition Identifies an object whose current and previous values are to
be collected when the sampling event occurs.

Table 7-1 New Constructs Used in this Chapter

Construct How the Construct is Used

extend cpu_env_s {

event cpu_fsm is @sys.cpuclk;

// DUT Coverage: State Machine and State
// Machine transition coverage

defines FSM
sampling event
7-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Defining Coverage
Defining Coverage for the Generated Instructions
3. Add the coverage group and coverage items for state machine coverage.

The coverage group name (cpu_fsm) must be the same as the event name defined in Step 2 above.
The item statement declares the name of the coverage item (fsm), its data type (FSM_type_t), and
the object in the DUT to be sampled. The transition statement says that the current and previous
values of fsm must be collected. This means that whenever the sys.cpuclk signal changes, the
Specman system collects the current and previous values of top.cpu.curr_FSM.

4. Save the cpu_cover.e file.

Defining Coverage for the Generated Instructions
You can use the constructs shown in Table 7-1 on page 7-1 to define coverage collection for the CPU
instruction stream:

• opcode

• op1

This coverage group uses a sampling event that is declared and triggered in the cpu_drive.e file.

drive_one_instr(instr: cpu_instr_s) @sys.cpuclk is {
.
.
.

emit instr.start_drv_DUT;
.
.
.

Thus data collection for the instruction stream occurs each time an instruction is driven into the DUT.

extend cpu_env_s {
event cpu_fsm is @sys.cpuclk;

// DUT Coverage: State Machine and State
// Machine transition coverage
cover cpu_fsm is {
item fsm: cpu_FSM_type_t = smp.curr_FSM_p$.as_a(cpu_FSM_type_t);
transition fsm;

};
};

defines the
coverage

group
cpu_fsm
Specman Tutorial 7-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Defining Coverage
Procedure
Procedure
To extend the cpu_instr_s struct to define coverage for the generated instructions:

1. Find the portion of the cpu_cover.e file that looks like the excerpt below and review the coverage
group declaration.

2. Add opcode and op1 items to the start_drv_DUT coverage group.

3. Save the cpu_cover.e file.

Defining Coverage for the Corner Case
Test 3 of the functional test plan (see “Test 3” on page 2-4) specifies the corner case that you want to
cover. To test the behavior of the DUT when the JMPC (jump on carry) instruction opcode is issued, you
need to be sure that the JMPC opcode is issued only when the carry signal is high. Here, you define a
coverage group so you can determine how often that combination of conditions occurs.

Procedure
To define coverage data for the designated corner case:

1. Add a carry item to the start_drv_DUT coverage group.

extend cpu_instr_s {

cover start_drv_DUT is {

};

};

defines
coverage group

extend cpu_instr_s {

cover start_drv_DUT is {
item opcode;
item op1;

};
};
7-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Defining Coverage
Procedure
2. Define a cross item between opcode and carry.

Cross coverage lets you define the intersections of two or more coverage items, generating a more
informative report. The cross coverage item defined here shows every combination of carry value
and opcode that is generated in the test.

3. Save the cpu_cover.e file.

Now that you have defined the coverage groups, you are ready to simulate and view the coverage
reports.

extend cpu_instr_s {

cover start_drv_DUT is {
item opcode;
item op1;
item carry: bit = sys.smp.carry_p$;

};
};

extend cpu_instr_s {

cover start_drv_DUT is {
item opcode;
item op1;
item carry: bit = sys.smp.carry_p$;
cross opcode, carry;

};
};
Specman Tutorial 7-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Defining Coverage
Procedure
7-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

8 Analyzing Coverage

Goals for this Chapter
The goals for this chapter are to

• Determine whether the tests you have generated meet the specifications in the functional test plan

• Based on that information, decide whether additional tests must be created to complete design
verification.

What You Will Learn
In this chapter, you learn how to display coverage reports for individual coverage items, exactly as you
have defined them, and to merge reports for individual items so that you can easily analyze the progress
of your design verification.

You will examine coverage grades for different types of coverage items. A coverage grade indicates how
thoroughly the item was covered during a test or set of tests. The maximum grade is 1.00, which means
that every possible value for that item occurred, or was “hit”, during the tests. Incomplete coverage, or a
“hole”, is represented by a decimal fraction: A grade of 0.75, for example, means that three out of every
four possible values were hit.

As you work through this chapter, you gain experience with these Specman features:

• Help—This helps you find the information you need in the Specman Online Documentation.

• Coverage Extensibility—This allows you to change coverage group and coverage item definitions.

This chapter introduces the SimVision menu commands shown in Table 8-1.
Specman Tutorial 8-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Running Tests with Coverage Groups Defined
The steps required to analyze test coverage for the CPU design are:

1. Running tests with coverage groups defined.

2. Viewing state machine coverage.

3. Viewing instruction stream coverage.

4. Viewing corner case coverage.

The following sections describe these tasks in detail.

Running Tests with Coverage Groups Defined
This procedure is similar to the procedure you have already used to run tests without coverage.

Procedure
To run tests with coverage groups defined:

1. Open the working directory’s copy of the cpu_top.e file in an editor.

2. Find the lines in the file that look like this:

3. Remove the comment characters in front of the import line so the lines look like this:

Table 8-1 New SimVision Menu Commands Used in this Chapter

Command How the Command is Used

Tools ›› Coverage Displays coverage reports and creates cross-coverage reports.

Help ›› Specman Help Library Invokes the Specman Online Documentation browser.

// Add Coverage:
//import cpu_cover;

// Add Coverage:
import cpu_cover;
8-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Viewing State Machine Coverage
4. Save the cpu_top.e file.

5. In SimVision, click File ›› Reload e Files to reload the files for test 2.

Tip If you have exited SimVision, you must reinvoke it and load cpu_tst2.e again. To do so, enter the
specman -gui command at the Linux prompt, click File ›› Load e Files, and select cpu_tst2.e.

6. Click Modules to confirm that eight modules are loaded:

cpu_instr
cpu_misc
cpu_smp
cpu_dut
cpu_drive
cpu_cover
cpu_top
cpu_tst2

7. In SimVision, click Verification ›› Test.

You should see something similar to the following in the Specman console. The last line indicates
that coverage data was written to a ucd file (a coverage data file).

test
Doing setup…
Generating the test with IntelliGen using seed 1

Starting the test…
Running the test…
DUT executing instr 0 : ANDI REG0x3, @0x8d
DUT executing instr 1 : XOR REG0x3, REG0x0
DUT executing instr 2 : ADD REG0x3, REG0x2
DUT executing instr 3 : ANDI REG0x3, @0x92
DUT executing instr 4 : RET REG0x3, REG0x1
.
.
.
Last specman tick - stop_run() was called
Normal stop - stop_run() is completed
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.
Wrote 1 cover_struct to ./cov_work/scope/cpu_tst2_sn1/sn.ucd

Viewing State Machine Coverage
You have two reports to look at, the state machine register report and the state machine transition report.
Specman Tutorial 8-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
If you are using a different seed or a version of the Specman verification system other than the version
for this tutorial, you might see different results in your coverage reports.

Procedure
1. In the Specman console, click on Verification ›› Specman Configuration to display the

“Configuration Options” form.

2. In the “Configuration Options” form, select the Coverage tab and then click on Use specview
coverage window for the Coverage Analysis Window (on the center far-right of the form). Then
close the form.

This tutorial uses the Specview coverage window as the default coverage GUI.

3. In SimVision, click on the Coverage icon.

Coverage Icon
8-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
The Coverage window appears.

4. In the left pane, click the + to the left of cpu_env_s.cpu_fsm and then click on fsm.

The state machine register report appears in the right-hand pane.
Specman Tutorial 8-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
The figure below shows that, during this run, the fetch1_st state was entered 134 times in the
339 times sampled.

5. In the left pane, click on transition_fsm.

The state machine transition report appears in the right-hand frames.

As you scroll down the display, perhaps the first thing you notice about the state machine transition
report is that there are a number of transitions that never occurred. This is because these transitions
are illegal.
8-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
You can change the display to show only data for transitions that have occurred by clicking
View ›› Full in the Coverage GUI toolbar. (The View ›› Full option shows only data for transitions
that have occurred; the View ›› Holes Only option shows only data for transitions that have not
occurred.)
Specman Tutorial 8-7

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
You can also define transitions as illegal so that they do not appear in the coverage report. Illegal
transition definition is described in the following steps.

6. For an explanation of how to define transitions as illegal so that they do not appear in the coverage
report, click Help ›› Help Browser.

The Cadence Help System’s navigation pane opens.

7. We want to search for transition only in the Specman manuals:

a. Enter transition in the Search Term field.

b. Click the down-pointing red arrow to the right of the Search Term field and click Search Selected.

c. In the list of documentation sets, click Specman.

d. Click the Search Selected magnifying glass next to the Search Term field.

e. Look for and select the “transition” section in the Specman e Language Reference.

The transition construct is part of the syntax for coverage items.
8-8 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Extending Coverage
8. When the transition construct description appears:

a. Scroll down the page to the illegal coverage item option description.

b. In the illegal option description, click on the “illegal” link to display an example showing the
use of the illegal option:

struct packet {
packet_len: uint (bits: 12);
event rcv_clk;
cover rcv_clk is {

item len: uint (bits: 12) = packet_len using
ranges = {

range([16..255], "small");
range([256..3k-1], "medium");
range([3k..4k-1], "big");

},
illegal = (len < 16 or len > 4000);

};
};

Extending Coverage
In this section, the coverage group is extended by the addition of a new item, and by making an existing
item a per-instance item, which allows us to see coverage separately for different subtypes.

Procedure
To extend a coverage group:

1. Copy the src/cpu_cover_extend.e file to the working directory and open the cpu_cover_extend.e file
in an editor.

2. Find the lines in the file that look like this:

extend cpu_instr_s {

//Extend the start_drv_DUT cover group with "is also"

// Add the kind field to the cover group as a new item

// Extend the op1 item to make it a per_instance item
};
Specman Tutorial 8-9

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
3. Add the coverage group extension struct member. Do not forget the closing bracket.

The syntax for a coverage group extension is the same as for the original coverage group definition,
except that it uses is also instead of is.

4. Add a new coverage item to cover the kind field of the cpu_instr_s struct.

5. Extend the op1 item with using also, to make it a per_instance item.

Since the op1 item can have one of the enumerated types REG0, REG1, REG2, or REG3, making
this item a per_instance item will provide separate coverage for each of those four subtypes.

extend cpu_instr_s {

// Extend the start_drv_DUT cover group with "is also"
cover start_drv_DUT is also {

// Add the kind field to the cover group as a new item

// Extend the op1 item to make it a per_instance item
};

};

extend cpu_instr_s {

// Extend the start_drv_DUT cover group with "is also"
cover start_drv_DUT is also {

// Add the kind field to the cover group as a new item
item kind;

// Extend the op1 item to make it a per_instance item
};

};
8-10 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
6. Save the cpu_cover_extend.e file.

7. Open the working directory’s cpu_top.e file in an editor.

8. Find the lines in the file that look like this:

9. Remove the comment characters in front of the import line so the lines look like this:

10. Save the cpu_top.e file.

11. In SimVision, click File ›› Reload e Files to reload the files for test 2.

Tip If you have exited SimVision, you must reinvoke it and load cpu_tst2.e again. To do so, enter the
specman -gui command at the Linux prompt, click File ›› Load e Files, and select cpu_tst2.e.

12. Click Modules from the Files menu to confirm that nine modules are loaded:

cpu_instr
cpu_misc
cpu_smp
cpu_dut
cpu_drive

extend cpu_instr_s {

// Extend the start_drv_DUT cover group with "is also"
cover start_drv_DUT is also {

// Add the kind field to the cover group as a new item
item kind;

// Extend the op1 item to make it a per_instance item
item op1 using also per_instance;

};
};

// Extend Coverage:
//import cpu_cover_extend;

// Extend Coverage:
import cpu_cover_extend;
Specman Tutorial 8-11

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Viewing Coverage Per Instance
cpu_cover
cpu_cover_extend
cpu_top
cpu_tst2

13. In SimVision, click Verification ›› Test.

You should see something similar to the following in the Specman console. The last line indicates
that coverage data was written to a ucd file (a coverage data file).

Doing setup…
Generating the test with IntelliGen using seed 1
Starting the test…
Running the test…
DUT executing instr 0 : ADD REG0x3, REG0x0
DUT executing instr 1 : ANDI REG0x3, @0x20
DUT executing instr 2 : XOR REG0x3, REG0x2
DUT executing instr 3 : ADD REG0x3, REG0x1
DUT executing instr 4 : SUBI REG0x3, @0x9f
.
.
.
Last specman tick - stop_run() was called
Normal stop - stop_run() is completed
Checking the test ...
Checking is complete - 0 DUT errors, 0 DUT warnings.
Wrote 1 cover_struct to ./cov_work/scope/cpu_tst2_sn1/sn.ucd

14. In SimVision, click on the Coverage icon to display the Coverage GUI.

The coverage data now includes information about the number of samples of each subtype (REG0,
REG1, REG2, REG3) of the cpu_instr_s type. Each sample also includes information about the new
kind item.

In the next procedure, we view this new information.

Viewing Coverage Per Instance
We now look at the per-instance coverage for the op1 subtypes.

Procedure
To view coverage by op1 subtype of the cpu_instr_s instances:

1. If you closed the Coverage window after the previous procedure, you must reopen it. In SimVision.
Click on the Coverage icon in SimVision.
8-12 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
In the left pane, we now see that the instr.start_drv_DUT data has four additional entries:
cpu_instr_s.start_drv_DUT(op1==REG0) through cpu_instr_s.start_drv_DUT(op1==REG3).

2. In the left pane, click the + to the left of cpu_instr_s.start_drv_DUT(op1==REG0).

We see that the kind item now appears in the cpu_instr_s.start_drv_DUT group.

3. Click on kind.

The coverage data for the imm and reg values of kind appears in the right pane. These are the
coverage results for kind when the op1 value is REG0, since we selected the
cpu_instr_s.start_drv_DUT(op1==REG0) instance in the left pane.

4. In the left pane, click the + to the left of cpu_instr_s.start_drv_DUT and each of the instances
(op1==REG1), (op1==REG2), (op1==REG3) to expand the top instance and all of the subtypes.

We see that the cross__opcode__carry item has a different grade for each instance.

5. Click on each cross__opcode__carry item in turn to see which crosses of opcode and carry never
occurred at all, and which additional crosses never occurred under each particular subtype. The
crosses that never occurred are shown in red, and with 0 in the Hits column.
Specman Tutorial 8-13

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Viewing Corner Case Coverage
Viewing Corner Case Coverage
Our corner case coverage shows how many times the JMPC opcode was issued when the carry bit was
high (1).

Procedure
To view corner case coverage of the JMPC opcode:

1. If you closed the Coverage window after the previous procedure, you must reopen it. In SimVision.
Click on the Coverage icon in SimVision.

The Coverage window appears.

2. In the left pane, click the + to the left of cpu_instr_s.start_drv_DUT and then click on
cross__opcode__carry.

The cross-coverage report for opcode and carry appears in the right-hand pane.

3. Scroll down to the JMPC opcode.

In the figure below, you can see that carry was 0 each time that opcode was JMPC. The
combination of opcode JMPC and carry 1 never occurred in this set of tests, which means that there
is a coverage hole for that item and it has a grade of 0. The other red items indicate other
combinations of carry and opcode that never were hit in this set of tests. Any grade less than 1.00 is
a hole. Grades less than 1.00 but more than 0 are shown in yellow in the coverage GUI.
8-14 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
The ability to cross test input with the DUT’s internal state yields the valuable information that the tests
created so far do not truly test the JMPC opcode. You could raise the weight on JMPC and hope to
achieve the goal. However, many simulation cycles would be wasted to cover this corner case. The
Specman system lets you attack this type of corner case scenario much more efficiently. In the next
chapter you learn how to do this.

In the next chapter, we see how to modify the test files to push the test into a corner that is not being
covered well by the current test.
Specman Tutorial 8-15

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing Coverage
Procedure
8-16 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

9 Writing a Corner Case Test

Goals for this Chapter
As described in the Functional Test Plan, you want to create a corner case test that generates the JMPC
opcode when the carry signal is high.

What You Will Learn
As you work through this chapter, you learn an effective methodology for addressing corner case
scenario testing. With Specman’s on-the-fly test generation, you can direct the test to constantly
monitor the state of signals in the DUT and to generate the right test data—at the right time—to reach a
corner case scenario. This feature spares you the time-consuming effort required to write deterministic
tests to reach the same result.

This chapter introduces the e constructs shown in Table 9-1.

The steps required to create the corner case test are:

• Increasing the probability of arithmetic operations.

• Linking JMPC generation to the DUT’s carry signal.

The following section describes these tasks in detail.

Table 9-1 New Constructs Used in this Chapter

Construct How the Construct is Used

port$ * weight : value Used as an expression containing a DUT signal within the select block
of a keep soft constraint that controls the distribution of generated
values.
Specman Tutorial 9-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Writing a Corner Case Test
Increasing the Probability of Arithmetic Operations
Increasing the Probability of Arithmetic Operations
The goal of this test is to generate the JMPC opcode only when the carry signal is high (that is, when its
value is 1). The carry signal can only be high when arithmetic operations are performed. Therefore, the
test should favor generation of arithmetic operations over other types of operations.

Procedure
To increase the probability of arithmetic operations:

1. Copy the src/cpu_tst3.e file to the working directory and open the cpu_tst3.e file in an editor.

2. Find the portion of the file that contains the keep soft constraint.

3. Put a high weight on arithmetic operations and low weights on the others.

4. Save the cpu_tst3.e file.

extend cpu_instr_s {
keep soft opcode == select {

// high weights on arithmetic

// generation of JMPC controlled by the carry
// signal value

};
};

extend cpu_instr_s {
keep soft opcode == select {

// high weights on arithmetic
40 : [ADD, ADDI, SUB, SUBI];
20 : [AND, ANDI, XOR, XORI];
10 : [JMP, CALL, RET, NOP];

// generation of JMPC controlled
// by the carry signal value

};
};

keeps high weight
on arithmetic

operations
9-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Writing a Corner Case Test
Linking JMPC Generation to the Carry Signal
Linking JMPC Generation to the Carry Signal
If you generate the list of instructions before simulation, there is only a low probability of driving a
JMPC instruction into the DUT when the carry signal is asserted. A better approach is to monitor the
carry signal and generate the JMPC instruction when the carry signal is known to be high.

This methodology lets you reach the corner case from multiple paths—in other words, from different
opcodes issued prior to the JMPC opcode. This test shows how the DUT behaves under various
sequences of opcodes.

Procedure
1. Find the portion of the cpu_tst3.e file that looks like this:

2. On a separate line within the select block, enter a weight for the JMPC opcode, as a function of the
carry signal (weight is 0 when carry = 0, or 90 when carry = 1).

extend cpu_instr_s {
keep soft opcode == select {

// high weights on arithmetic
40 : [ADD, ADDI, SUB, SUBI];
20 : [AND, ANDI, XOR, XORI];
10 : [JMP, CALL, RET, NOP];

// generation of JMPC controlled by
// the carry signal value

};
};
Specman Tutorial 9-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Writing a Corner Case Test
Procedure
3. Save the cpu_tst3.e file.

You are now ready to run this test to create the corner case test scenario. Before running this test,
however, you want to address another important part of functional verification: self-checking module
creation. In the next chapter, you learn easy, self-checking module creation, another powerful feature
provided by the Specman system.

extend cpu_instr_s {
keep soft opcode == select {

// high weights on arithmetic
40 : [ADD, ADDI, SUB, SUBI];
20 : [AND, ANDI, XOR, XORI];
10 : [JMP, CALL, RET, NOP];

// generation of JMPC controlled by
// the carry signal value
sys.smp.carry_p$ * 90 : JMPC;

};
};
9-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

10 Creating Temporal and Data
Checks

Goals for this Chapter
In this chapter, you will check timing-related dependencies, and automate the detection of unexpected
DUT behavior, by adding a self-checking module to the verification environment.

What You Will Learn
In this chapter, you will learn how to create temporal checks for the state machine control signals. You
will also learn how to implement data checks using a reference model.

As you work through this chapter, you will gain experience with two of the Specman verification
system’s enabling features:

• Specman temporal constructs—These powerful constructs let you easily capture the DUT interface
specifications, verify the protocols of the interfaces, and efficiently debug them. The temporal
constructs minimize the size of complex self-checking modules and significantly reduce the time it
takes to implement self-checking.

• Specman data checking—Data checking methodology can be flexibly implemented in the Specman
system. For data-mover applications like switches or routers, you can use powerful built-in constructs
for rule-based checking. For processor-type applications like the application used in this tutorial,
reference model methodology is commonly implemented.

This chapter introduces the e constructs shown in Table 10-1.
Specman Tutorial 10-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Creating the Temporal Checks
The steps required to implement these checks are:

1. Creating the temporal checks.

2. Creating the data checks.

3. Running the test with checks.

The following sections describe these tasks in detail.

Creating the Temporal Checks
The design specifications for the CPU require that after entering the exec_st state, the fetch1 signal must
be asserted in the following cycle. This is a temporal check because it specifies the correct behavior of
DUT signals across multiple cycles.

Procedure
To create the temporal check:

1. Copy the src/cpu_checker.e file to the working directory and open the cpu_checker.e file in an editor.

2. Find the portion of the file that looks like this:

Table 10-1 New Constructs Used in this Chapter

Construct How the Construct is Used

expect Checks that a temporal expression is true and, if not, reports an error.

check Checks that a Boolean expression is true and, if not, reports an error.
10-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Procedure
3. Define a temporal check for the enter_exec_st event by creating an expect statement.

4. Save the cpu_checker.e file.

// Temporal (Protocol) Checker
event enter_exec_st is

(change(smp.curr_FSM_p$) and
true(smp.curr_FSM_p$ == exec_st))@sys.cpuclk;

event fetch1_assert is (

change(smp.fetch1_p$) and
true(smp.fetch1_p$ == 1)) @sys.cpuclk;

//Interface Spec: After entering instruction
//execution state, fetch1 signal must be
//asserted in the following cycle.

defines start of
exec state

defines rise of
fetch1

// Temporal (Protocol) Checker
event enter_exec_st is

(change(smp.curr_FSM_p$) and
true(smp.curr_FSM_p$ ==
exec_st))@sys.cpuclk;

event fetch1_assert is (

change(smp.fetch1_p$) and
true(smp.fetch1_p$ == 1)) @sys.cpuclk;

//Interface Spec: After entering instruction
//execution state, fetch1 signal must be
//asserted in the following cycle.
expect @enter_exec_st => {@fetch1_assert}

@sys.cpuclk else
dut_error("PROTOCOL ERROR");

issues an error
message if fetch1

does not rise
exactly one cycle

after entering
execute state
Specman Tutorial 10-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Creating Data Checks
Creating Data Checks
To determine whether the CPU instructions are executing properly, you need to monitor the program
counter, which is updated by many of the control flow operations.

Reference models are not required for data checking. You could use a rule-based methodology.
However, reference models are part of a typical strategy for verifying CPU designs. The Specman
system supports reference models written in Verilog, VHDL, C, or, as in this tutorial, e. All you need to
do is to create checks that compare the program counter in the DUT to their counterparts in the reference
model.

Procedure
Creating data checks has two parts:

• Adding the data checks

• Synchronizing the reference model execution with the DUT

Adding the Data Checks
To add the data checks:

1. Find the portion of the cpu_checker.e file where the exec_done event is defined.

Notice that there is an event, exec_done, and associated method, on_exec_done. The Specman
system automatically creates an associated method for every event you define. The method is empty
until you extend it. The method executes every time the event occurs.

2. Add a check for the program counter by creating a check statement.

// Data Checker
event exec_done is (fall(smp.exec_p$) and

true(smp.rst_p$ == 0))@sys.cpuclk;

on_exec_done() is {
// Compare PC - program counter

};
.
.
.

event definition

method associated
with event
10-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Synchronizing the Reference Model with the DUT
3. Save the cpu_checker.e file.

Synchronizing the Reference Model with the DUT
To synchronize the reference model with the DUT:

1. Open the cpu_drive.e file in an editor.

2. At the top of the file, find the line that imports the CPU reference model and remove the comment
characters from the import line.

3. Find the line that extends the Specman system by creating an instance of the CPU reference model
and remove the comment characters.

// Data Checker
event exec_done is (fall(smp.exec_p$) and

true(smp.rst_p$ == 0))@sys.cpuclk;

on_exec_done() is {
// Compare PC - program counter
check that sys.cpu_dut.pc == sys.cpu_refmodel.pc else

dut_error("DATA MISMATCH(pc)");

issues an error if
there is a

mismatch in the
program

counters of the
DUT and the

reference model

<'
import cpu_refmodel;

extend sys {
event cpuclk is fall(smp.clk_p$)@sys.any;

cpu_env : cpu_env_s;
cpu_dut : cpu_dut_s;

 //cpu_refmodel : cpu_refmodel_s;
};
'>

imports the
reference model
Specman Tutorial 10-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Synchronizing the Reference Model with the DUT
4. Find the line in the reset_cpu TCM that resets the reference model and remove the comment
characters.

5. Find the line in the drive_one_instr TCM that executes the reference model when the DUT is in the
execute state and remove the comment characters.

6. Save the cpu_drive.e file.

<'
import cpu_refmodel;

extend sys {
event cpuclk is fall(smp.clk_p$)@sys.any;

cpu_env : cpu_env_s;
cpu_dut : cpu_dut_s;
cpu_refmodel : cpu_refmodel_s;

};
'>

creates an
instance of the

reference model

reset_cpu() @sys.cpuclk is {
smp.rst_p$ = 0;
wait [1] * cycle;
smp.rst_p$ = 1;
wait [5] * cycle;
sys.cpu_refmodel.reset(); // reset reference model
smp.rst_p$ = 0;

};

resets the
reference model

// execute instr in refmodel
sys.cpu_refmodel.execute(instr,sys.cpu_dut);

};
10-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Running the Simulation
Running the Simulation
This procedure, which involves loading the appropriate files and then executing the test, is very similar
to the procedure you used in previous chapters to generate other tests.

The only difference is that this time you will include the reference model and checks.

Procedure
To run the simulation:

1. Open the working directory’s copy of the cpu_top.e file in an editor.

2. Find the lines in the file that look like this:

3. Remove the comment characters in front of the import line so the lines look like this:

4. Save the cpu_top.e file.

5. Copy the src/cpu_refmodel.e file to the working directory.

6. Invoke SimVision if it is not already running:

% speman -gui

7. Click Verification ›› Restore Specman State ›› Restore to Last State to remove any loaded
modules from the current session.

8. Click File ›› Load e File, select the cpu_tst3.e file, and click OK.

Remember, this is the test that you edited in Chapter 9 “Writing a Corner Case Test”.

9. In SimVision, click Verification ›› Test to run the simulation.

// Add Checking:
//import cpu_checker;

// Add Checking:
import cpu_checker;
Specman Tutorial 10-7

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Procedure
It looks like we hit a bug here. The Specman system is reporting a protocol violation.

test
Doing setup ...
Generating the test with IntelliGen using seed 7...

Starting the test ...
Running the test ...
DUT executing instr 0 : XOR REG0x0, REG0x2
DUT executing instr 1 : ADD REG0x2, REG0x3
DUT executing instr 2 : CALL REG0x1, @0x09
DUT executing instr 3 : ANDI REG0x1, @0x65
DUT executing instr 4 : AND REG0x1, REG0x0
DUT executing instr 5 : ADD REG0x0, REG0x2
DUT executing instr 6 : SUB REG0x0, REG0x1
DUT executing instr 7 : XORI REG0x3, @0xca
DUT executing instr 8 : ADDI REG0x3, @0xcb
DUT executing instr 9 : ADDI REG0x1, @0xc0
DUT executing instr 10 : ANDI REG0x1, @0xd6
DUT executing instr 11 : SUB REG0x0, REG0x2
.
.
.
*** Dut error at time 1966

Checked at line 39 in @cpu_checker
In cpu_env_s-@12 (unit: sys):

PROTOCOL ERROR
--
Will stop execution immediately (check effect is ERROR)

*** Error: A Dut error has occurred

*** Error: Error during tick command

10. Click the error hyperlink that is similar to “Checked at line 39 in @cpu_checker” to view the line in
the source that generated this message.

This message comes from the checker module that you just created.
10-8 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Procedure
11. Close the Source Browser.

Do not quit SimVision at this time. The first procedure in the next chapter starts from this point.

In the next chapter, you learn how to identify the conditions under which this bug occurs and how to
bypass the bug until it can be fixed.
Specman Tutorial 10-9

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Creating Temporal and Data Checks
Procedure
10-10 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

11 Analyzing and Bypassing Bugs

Goals for this Chapter
The main goal for this chapter is to debug the temporal error generated during your previous tutorial
session (Chapter 10 “Creating Temporal and Data Checks”). At the end of this chapter, you also learn
how to direct the generator to bypass a test scenario that causes an error.

What You Will Learn
As you work through this chapter, you gain experience with two of the Specman system’s enabling
features:

• The Specman debugger—Provides powerful debugging capability with visibility into the HDL
design.

• The Specman bypass feature—Lets you temporarily prevent the Specman system from generating
test data that reveals a bug in the design. With this feature you can continue testing while the bug is
being fixed.

This chapter introduces the SimVision menu commands shown in Table 11-1 and the generation
debugger menu commands shown in Table 11-2.

Table 11-1 New SimVision Menu Commands Used in this Chapter

SimVision Command How the Command is Used

Verification ›› Specman Debugger ›› Open Thread Browser Opens the Thread Browser,
which displays all of the TCMs
(threads) that are currently active.
Specman Tutorial 11-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Displaying DUT Values
The steps for debugging the temporal error are:

1. Displaying DUT values.

2. Setting breakpoints.

3. Stepping the simulation.

4. Bypassing bugs.

The following sections describe how to perform these tasks.

Displaying DUT Values
If you have just completed Chapter 10 “Creating Temporal and Data Checks”, the PROTOCOL ERROR
message is still displayed on your Specman console window. If you exited SimVision, you will have to
reinvoke SimVision and run the simulation again, as described in “Running the Simulation” on page 10-7.
With SimVision running, continue with the procedure below.

Verification ›› Specman Debugger ›› Open Debug Window Opens the Debugger window,
which displays the source for the
current thread with the current
line highlighted.

Table 11-2 Generation Debugger Menu Commands Used in this Chapter

Generation Debugger Command How the Command is Used

View ›› Print Displays the current value of an e variable.

Breakpoint ›› Set Breakpoint ›› Break Sets a breakpoint on the currently highlighted line of e
code.

Run ›› Step Any Advances simulation to the next line of e code executed
in any thread.

Run ›› Step Advances simulation to the next line of e code executed
in the current thread.

Table 11-1 New SimVision Menu Commands Used in this Chapter

SimVision Command How the Command is Used
11-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Procedure
Procedure
To display DUT values:

1. In SimVision, click Verification ›› Specman Debugger ›› Open Thread Browser.

The Thread Browser appears.

The Thread Browser indicates the status of each TCM that is currently active in the Specman
system:

• Clock generation

• Drive and Sample CPU

• DUT

To debug the error, look first at the TCM that drives the DUT.

2. Click on line 2, the line for cpu_env_s-@12.drive_cpu, to display the corresponding source file for
this thread.

The Source File window at the bottom of the screen displays a section of the cpu_drive.e e code
module, with line 62 highlighted. The highlighted line shows that the drive_one_instr TCM is
waiting for the exec signal to rise.

3. Click View ›› Show Source to open the Debug window.
Specman Tutorial 11-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Procedure
The Debug window appears, displaying the cpu_drive.e file. Line 62 is highlighted.

4. To find out the current instruction type:

a. Use your mouse to highlight the phrase instr.kind (line 53 in the figure above).

b. Click the right mouse button and select Show Value.

The instr.kind value, imm, is printed in the Specman console window.

5. Similarly, highlight the phrase instr.opcode in line 57, click the right-mouse button and select Show
Value.

In the Specman console window, you can see that the value of opcode is JMPC.

For step 4

For steps 5
and 6
11-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Setting Breakpoints
6. Optionally, use the same method to display the value of any HDL signal by highlighting the
corresponding port expression.

For example, to display the value of top.data, highlight smp.data_p$, click the right-mouse button
and select Show Value.

Setting Breakpoints
You have determined that the bug appears on an immediate instruction when the opcode is JMPC. It may
be possible to narrow down even further the conditions under which the bug occurs. You can set a
breakpoint on the statement that drives the immediate instruction data into the DUT to see what the
operands of the instruction are.

Procedure
You can set a breakpoint on any line by double clicking on the line number (the narrow column of
numbers on the left of the code in the Source Browser).

However, in this case we want to set a breakpoint as close as possible to the error. In the following
procedure, you set a conditional breakpoint that enables the breakpoint soon after the error occurs:

1. Look again at the error message in the Specman console (as shown in Step 9 in “Running the
Simulation” on page 10-7) to see when the error occurred.

The error message says the error occurred at simulation time 1966.

2. To set a conditional breakpoint that is enabled just before the error occurs:

a. Right click on the line number 57 (the start of the immediate instruction) and select Break at
Line if...

An Input window appears that prompts you to input the conditional expression.

b. Type in “sys.time > 1900” and click OK.

This enables the breakpoint after 1900 cycles (shortly before the error occurs at time1966).

A red dot appears to the left of the line indicating that a breakpoint is set on this line.

Stepping the Simulation
You can trace the exact execution order of the e code by stepping through the simulation.
Specman Tutorial 11-5

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Procedure
Procedure
To step through the simulation:

1. In SimVision, click File ›› Reload e Files to run the simulation in debug mode.

2. In SimVision, click Verification ›› Test.

The simulation stops at the breakpoint, and the current line in the SimVision Source Browser is
shown at the breakpoint.

3. To step to the next source line in any subsequent thread, click the Step button in the Source Browser
window.

4. Continue clicking the Step button until you hit the Protocol error. (It takes over 100 steps to get to
the error.)

The Source Browser is on line 68 in the cpu_dut.e file. This line is the source of the bug.

For the purpose of simplifying this tutorial, we planted an obvious bug in the DUT. Whenever a
JMPC instruction jumps to a location greater than 10, execution requires two extra cycles to
complete—not one, as specified on this line.

Step button
11-6 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Bypassing the Bug
Bypassing the Bug
A common problem in traditional test generation methodology is that when there is a bug in the design,
verification cannot continue until the bug is fixed. There is no way to prevent the generator from
creating tests that hit the bug.

The Specman system’s extensibility feature, however, lets you temporarily prevent generation of the
conditions that cause the bug to be revealed.

This particular bug seems to surface when the JMPC operation is performed using a memory location
greater than 10. To continue testing other scenarios, you simply extend the test constraints to prevent the
Specman system from generating this combination.

Line 68 in the
cpu_dut.e file,
the source of
the bug.
Specman Tutorial 11-7

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Procedure
Procedure
To bypass the JMPC bug:

1. Copy the src/cpu_bypass.e file to the working directory.

2. Open the cpu_bypass.e file in an editor.

3. Review the keep constraint.

4. In SimVision, click Verification ›› Specman Debugger ›› Delete All Breakpoints.

5. In SimVision, click File ›› Reload e Files.

6. Click File ›› Load e File, select the cpu_bypass.e file, and click OK.

7. Click Verification ›› Test.

This time, the test runs to completion.

Tutorial Summary
Congratulations! You have successfully completed the major steps required to verify a device with the
Specman verification system.

In this tutorial:

• You captured the interface specifications for the CPU instructions in e and created the instruction
stream.

• You used specification constraints to ensure that only legal instructions were generated. You used
test constraints to create a simple go/no-go test.

• You created a Specman TCM (time consuming method) to define the driver protocol and then drove
the generated CPU instruction stream into the DUT. The results confirmed that you had generated
the first test and driven it correctly into the design.

<'
extend imm cpu_instr_s {

keep (opcode == JMPC) => op2 < 10 ;

};
'>
11-8 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Tutorial Summary
• Using Specman’s powerful constraint-driven generator, you generated many sets of instructions.
Using weight to control the generation value distribution, you effectively focused these sets of
instructions on the commonly executed portion of the CPU DUT.

• Using Specman’s unique Functional Coverage Analyzer, you accurately measured the effectiveness
of the coverage of the regression tests. You identified a corner case “hole” by viewing the graphical
coverage reports.

• To address the corner case scenario, you used Specman’s powerful on-the-fly generation capability
to generate a test based on the internal state of the design during simulation. Compared to the
traditional deterministic test approach, this approach tests the corner case much more effectively
from multiple paths.

• You then used the unique temporal constructs provided by the Specman system to create a
self-checking monitor for verifying protocol conformance.

• When the self-checking monitor revealed a bug, the Specman debugger provided extensive features
to debug the design efficiently.

Note You have created this verification environment, including self-checking modules and functional
coverage analysis, in a short period of time. Once the environment is established, creating a large number
of effective tests is merely one click away. The ultimate advantage of using the Specman system is a
tremendous reduction in verification time and resources.
Specman Tutorial 11-9

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Analyzing and Bypassing Bugs
Tutorial Summary
11-10 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

A Design Specifications for the
CPU

This document contains the following specifications:

• CPU instructions

• CPU interface

• CPU register list

CPU Instructions
The instructions are from three main categories:

• Arithmetic instructions—ADD, ADDI, SUB, SUBI

• Logic instructions—AND, ANDI, XOR, XORI

• Control flow instructions—JMP, JMPC, CALL, RET

• No-operation instructions—NOP

All instructions have a 4-bit opcode and two operands. The first operand is one of four 4-bit registers
internal to the CPU. This same register stores the result of the operation, in the case of arithmetic and
logic instructions.

Based on the second operand, there are two categories of instructions:

• Register instructions—The second operand is another one of the four internal registers.

• Immediate instructions—The second operand is an 8-bit value contained in the next instruction.
When the opcode is of type JMP, JMPC, or CALL, this operand must be a 4-bit memory location.
Specman Tutorial A-1

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Design Specifications for the CPU
CPU Instructions
Figure A-1 Register Instruction

Figure A-2 Immediate Instruction

Table A-1 shows a summary description of the CPU instructions.

byte 1

bit 7 6 5 4 3 2 1 0

opcode op1 op2

byte 1 2

bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

opcode op1 don’t
care

op2

Table A-1 Summary of Instructions

Name Opcode Operands Comments

ADD 0000 register, register ADD; PC <- PC + 1

ADDI 0001 register, immediate ADD immediate; PC <- PC + 2

SUB 0010 register, register SUB; PC <- PC + 1

SUBI 0011 register, immediate SUB immediate; PC <- PC + 2

AND 0100 register, register AND; PC <- PC + 1

ANDI 0101 register, immediate AND immediate; PC <- PC + 2

XOR 0110 register, register XOR; PC <- PC + 1

XORI 0111 register, immediate XOR immediate; PC <- PC + 2

JMP 1000 immediate JUMP; PC <- immediate value

JMPC 1001 immediate JUMP on carry;
if carry = 1 PC <- immediate value
else PC <- PC + 2

CALL 1010 immediate Call subroutine;
PC <- immediate value;
PCS <- PC + 2
A-2 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Design Specifications for the CPU
CPU Interface
CPU Interface
The CPU has three inputs and no outputs, as shown in Table A-2.

When the CPU is reset by the rst signal, rst must return to its inactive value no sooner than
min_reset_duration and no later than max_reset_duration.

CPU Register List
The CPU has six 8-bit registers and one 4-bit register, as shown in Table A-3.

RET 1011 Return from call; PC <- PCS

NOP 1100 Undefined command

Table A-2 Interface List

Function Direction Width Signal Name

CPU instruction input 8 bits data

clock input 1 bit clock

reset input 1 bit rst

Table A-3 Register List

Function Width Register Name

state machine
register

4 bits curr_FSM

program counter 8 bits pc

program counter
stack

8 bits pcs

register 0 8 bits r0

register 1 8 bits r1

Table A-1 Summary of Instructions (continued)

Name Opcode Operands Comments
Specman Tutorial A-3

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

Design Specifications for the CPU
CPU Register List
register 2 8 bits r2

register 3 8 bits r3

Table A-3 Register List

Function Width Register Name
A-4 Specman Tutorial

© 2013 Cadence Design Systems, Inc. All rights reserved worldwide.

	Contents
	1 Introduction
	2 Understanding the Environment
	3 Creating the CPU Instruction Structure
	4 Generating the First Test
	5 Driving and Sampling the DUT
	6 Generating Constraint-Driven Tests
	7 Defining Coverage
	8 Analyzing Coverage
	9 Writing a Corner Case Test
	10 Creating Temporal and Data Checks
	11 Analyzing and Bypassing Bugs
	A Design Specifications for the CPU

