
SVA Quick Reference
Product Version: IUS 11.1
Release Date: December 2011

This quick reference describes the SystemVerilog Assertion constructs
supported by Cadence Design Systems. For more information about
SystemVerilog Assertions, see the Assertion Writing Guide.

Note: Numbers in parentheses indicate the section in the IEEE
1800-2005 Standard for SystemVerilog for the given construct.

Binding

bind target bind_obj [(params)] bind_inst (ports) ;
(17.15) Attaches a SystemVerilog module or interface to
a Verilog module or interface instance, or to a VHDL
entity/architecture. Multiple targets supported. Example:

bind fifo fifo_full v1(clk,empty,full);
bind top.dut.fifo1 fifo_full v2(clk,empty,full);
bind fifo:fifo1,fifo2 fifo_full v3(clk,empty,full);

Immediate Assertions

[label :] assert (boolean_expr) [action_block] ;
(17.2) Tests an expression when the statement is
executed in the procedural code. Example:

enable_set_during_read_op_only : assert
(state >= ‘start_read && state <= ‘finish_read);
else $warning("Enable set when state => %b",

state);

Declarations

sequence identifier [argument_list] ;
sequence_expr [seq_op sequence_expr] ... ;

endsequence [: identifier]
(17.6) Declares a sequence expression that can be used
in property declarations. Local variables are permitted.
Example:

sequence BusReq (bit REQ=0, bit ACK=0);
 REQ ##[1:3] ACK;
endsequence

property identifier [argument_list] ;
[clock_expr] [disable_clause] property_expr ;

endproperty [: identifier]
(17.11) Declares a condition or sequence to be verified
during simulation. Local variables are permitted.
Example:

property P6 (bit AA, BB=‘true, EN=1);
@(negedge clk)
EN -> (BB ##1 c) |=> (AA ##[1:2] (d||AA));

endproperty

[identifier:] [(argument_list)]

(17.11) Creates an instance of a property declaration.
Example:

property P1;
@(event) a && b ##1 !a && !b;

endproperty

property P2;
@(posedge clk) rst |-> P1;

endproperty
Directives

[label :] assert property (prop_expr) [action_block] ;
(17.13.1) Checks a property during verification. Example:

property P5 (AA);
@(negedge clk) (b ##1 c) |=>

(AA ##[1:2] (d||AA));
endproperty
assert property (P5(a));

[label:] assume property (prop_expr) [action_block] ;
(17.13.2) Constrains the inputs considered for the
property during verification. In simulation, treated like
assert. Example:

A1: assume (@(ena) !rst);

[label:] cover property (prop_expr) [pass_statement] ;
[label:] cover sequence (seq_expr) [pass_statement] ;

(17.13.3) Monitors the property or sequence for coverage
and reports statistics. The statement is executed when
the property succeeds. Cover sequence reports all
matches. Example:

C1: cover property (@(event) a |-> b ##[2:5] c);

expect Statement

expect (prop_expr) [action_block] ;
(17.16) Blocks the current process until the property
succeeds or fails. Example:

expect(@(posedge clk) ##[1:10]
 top.TX_Monitor.data == value) success = 1;

else success = 0;

Clock Expressions

@({{posedge | negedge} clock | expression})
(17.14) Declares an event or event expression to use for
sampling assertion variable values. Multiple clocks
(17.12), and clocks inferred from an always block
containing only assertions, are supported. Examples:

assert property @(posedge clk1) (a ##1 b) |=>
 @(posedge clk2) (c ##1 d));

endproperty

assert property (@(posedge clk1) (a ##1 b) |=>
@(posedge clk2) (c ##1 d));

always @(posedge clk) begin
assert property ((a ##1 b) |=> (c ##1 d));
assert property ((a[*3]) |=> ~c);
cover property ((a ##1 b ##1 c) |=>

(d[*2:4]));
end

Default Clocking Blocks

default clocking [clk_identifier]
{identifier | clk_expression} ;
clocking_items

end clocking
default clocking clk_identifier

(17.14) Specifies the clock or event that controls property
evaluation. Example:

default clocking master_clk @(posedge clk);
property p4; (a |=> ##2 b); endproperty
assert property (p4);

endclocking
Disable Clause

disable iff (boolean_expr)
default disable iff (boolean_expr)

(17.11) Specifies a reset expression. Checking of the
property is terminated asynchronously when the
expression is true. Example:

property P4;
@(negedge clk) disable iff (rst)
(c) |-> (##[max-1:$] d);

endproperty

Property Expressions

sequence_expr |-> property_expr
(17.11.2) The property expression must be true in the
last cycle that the sequence expression is true
(overlapping). Example:

property P4;
@(negedge clk)
disable iff (rst)
(c) |-> (##[max-1:$] d);

endproperty

sequence_expr |=> property_expr
(17.11.2) The property expression must be true in the
first cycle after the sequence expression is true.
Example:

property property P5 (AA);
@(negedge clk)
(b ##1 c) |=> (AA ##[1:2] (d||AA));

endproperty

property_expr and property_expr
(17.11) Returns true if both property expressions are
true. Example:

@(c) v |=> (w ##1 @(d) x) and (y ##1 z)

not property_expr
(17.11) Returns the opposite of the value returned by the
property_expr. Example:

property abcd;
 @(posedge clk) a |-> not (b ##1 c ##1 d);
endproperty

if (expression) property_expr1 [else property_expr2]
(17.11) If expression is true, property_expr1 must
hold; property_expr1 does not need to hold when
expression is false. If expression is false,
property_expr2 must hold, if it exists. Example:

property P2;
@ (negedge clk)

if (a)
b |=> c;

else
d |=> e;

endproperty

Sequence Operators

sequence_expr1 and sequence_expr2

(17.7.4) Both sequences must occur, but the end times of
the operands can be different. Example:

(a ##2 b) and (c ##2 d ##2 e) ;

© 2011 Cadence Design Systems, Inc.
All rights reserved.
Sequence Operators (cont’d)

first_match (sequence_expr[, seq_match_item])

(17.7.7) Evaluation of one or more sequences stops
when the first match is found. Example:

sequence s1;
first_match(a ##1 b[->1]:N] ## c);

endsequence

sequence_expr1 intersect sequence_expr2
(17.7.5) Both sequences must occur, and the start and
end times of the sequence expressions must be the
same. Example:

(a ##2 b) intersect (c ##2 d ##2 e)

sequence_expr1 or sequence_expr2
(17.7.6) At least one of the sequences must occur.
Example:

(b ##1 c) or (d[*1:2] ##1 e) or f[*2]

boolean_expr throughout sequence_expr
(17.7.8) A condition must hold true for the duration of a
sequence. Example:

(a ##2 b) throughout read_sequence

sequence_expr1 within sequence_expr2
(17.7.9) sequence_expr1 must match at some point
within the timeframe of sequence_expr2. Example:

(a ##2 b ##3 c) within write_enable

Sequence Methods

sequence_instance.[ended|matched|triggered]

(17.12.6) Identifies the endpoint of a sequence. Example:

wait (AB.triggered) || BC.triggered);
if (AB.triggered) $display("AB triggered");

Cycle Delays

##integral_number
##Identifier
##(constant_expression)
##[const_expr : const_expr]
##[const_expr : $]

(17.5) Specifies the number of clock ticks from the
current clock tick until the next specified behavior occurs.
Example:

property property P5 (AA);
@(negedge clk)
(b ##1 c) |=> (AA ##[1:2] (d||AA));

endproperty

Local Variables in Sequences and Properties

(seq_expression {, seq_match_item}) [repetition_op]
(17.8, 17.9) The seq_match_item is executed when
seq_expression is matched. The match item can be a
subroutine call. Example:

sequence data_check;
int x;
a ##1 (!a, x=data_in) ##1 !b[*0:$]
##1 b && (data_out=x);

endsequence
Repetition

[* const_or_range_expression]
(17.7.2) Consecutive repetition. Example:

(a[*2] ##2 b[*2]) |=> (d)

[-> const_or_range_expression]
(17.7.2) Goto repetition. Example:

a ##1 b[->5] ##1 c

[= const_or_range_expression]

(17.7.2) Non-consecutive repetition. Example:

s1 |=> (b [=5] ##1 c)

 Shortcuts

R[*] is the same as R[*0:$]
##[*] is the same as ##[0:$]
R[+] is the same as R[*1:$]
##[+] is the same as ##[1:S]

Assertion Severity Tasks

$fatal ([0 | 1 | 2 ,] message [, args]) ;
(17.2) Fatal message task; messages can be strings or
expressions. You can call this task from the action block
of an assertion. Example:

$fatal (0);

$error (message [, args]) ;
$warning (message [, args]) ;
$info (message [, args]) ;

(17.2) Non-fatal message tasks; messages can be
strings or expressions. You can call these tasks from the
action block of an assertion. Example:

$error("Unsupported memory task command %b",
m_task);

$warning("Enable is set during non-read op:
state=>%b", state);

System Functions

$onehot (bit_vector)
(17.10) Returns true if one and only one bit of the
expression is high. Example:

property p1(Arg)
@(posedge clk) $onehot(Arg);

endproperty

$onehot0 (bit_vector)
(17.10) Returns true if no more than one bit of the
expression is high. Example:

property p2(Arg)
@(posedge clk) $onehot0(Arg);

endproperty

$isunknown (bit_vector)
(17.10) Returns true if any bit of the expression is X or Z.
Example:

property p3(Arg)
@(posedge clk) $isunknown(Arg);

endproperty
$countones (bit_vector)
(17.10) Returns the number of bits in a vector that have
the value 1. Example:

property p4(Arg)
@(posedge clk) $countones(Arg) == 4;

endproperty

Sampled-Value Functions

$sampled(expression)
(17.7.3) Returns the sampled value of the expression at
the current clock cycle. Example:

property propA
@(posedge clk) (a ##1 b);

endproperty
p1: assert (propA)

$display("%m passed");
 else $warning("a == %s; b == %s",

$sampled(test.inst.a),
 $sampled(test.inst.b));

$rose(expression)
(17.7.3) Returns true if the sampled value of
expression changed to 1 during the current clock
cycle. Example:
Example:
(a ##1 b) |-> $rose(test.inst.sig4);

$fell(expression)
(17.7.3) Returns true if the sampled value of
expression changed to 0 during the current clock
cycle. Example:

(a ##1 b) |-> $fell(test.inst.c);

$stable(expression)
(17.7.3) Returns true if the sampled value of
expression remained the same during the current
clock cycle. Example:

(a ##1 b) |-> $stable(test.inst.c);

$past(expression [, n_cycles])
(17.7.3) Returns the sampled value of expression at
the previous clock cycle or the specified number of clock
ticks in the past. Example:

(a == $past(test.inst.c, 5)

Assertion-Control System Tasks

$assertoff [(levels [, list_of_mods_or_assns])] ;
$asserton [(levels [, list_of_mods_or_assns])] ;
$assertkill [(levels [, list_of_mods_or_assns])] ;

(22.8) Controls assertion checking during simulation.
Example:

$assertoff (0, top.mod1, top.mod2.net1);

