
  

VhdlCohen Publishing 
& Consulting 

http://www.vhdlcohen.com/ 
VhdlCohen@aol.com       

PSL/SUGAR QUICK REFERENCE CARD 
VERILOG 

From book: Using PSL/SUGAR with Verilog and VHDL, 
Guide to Property Specification Language for Assertion-Based Verification, Ben 
Cohen, 2003, isbn 0-9705394-4-4 

Rev A 5/30/03 
Property Format 
property <name> = [operator] [enabling_condition(s)] 
    [implication_operator(s)] (fulfilling_condition) 
      [until | until_ | abort discharging_condition]   
                       [@(clock_expression)]; 

// Example with embedded PSL  
 
// psl property REQ_ACK_IN_4_CYCLES = 
// always({req && !ack} |=>{[*0:3]; ack} abort !reset_n) @(posedge clk);  
// never (push && fifo_full && !pop);  

Name : Identifier displayed when property fails 
Operator: always |  never  
Enabling_condition:  Boolean. Zero=false, non-
zero=true 
Implication_operator: Relationship between 
expressions 
Fulfilling condition  Tested behavior. Checked every 
verification cycle. Boolean expression or sequence. Last 
expression prior to any discharging condition. 
Discharging condition Stop checking of the behavior.  
clock expression When to sample the assertion. 
Generally a clock edge, but can be any Boolean 
expression.   Default clock can be specified. 

Implication_operators 
->            RHS started when LHS is true. RHS is Boolean.  
-> next    RHS evaluated in next cycle after LHS true.  RHS is Boolean. 
|->           RHS started in last cycle of the LHS true. LHS is a sequence  {}  
|=>          RHS started following cycle LHS condition true. LHS is a 

sequence {}.  Shorthand for  |-> {true;  
eventually!   RHS is true in some future cycle, and must be true before 

the end of simulation. RHS is Boolean or a sequence   
Discharging conditions   

until(_) Fulfilling condition must hold until the expression is true.   
abort Cancels checking of an assertion.  

Default clock 
The clock   default clock = (posedge clk); 

     property NeverRdWrBothActive = never (read  && write); 
SERE Operators  
; Temporal concatenation  
     {a; b; c}   a at cycle t,  b at t+1, c at t+2 c is true.  
[* ]  Consecutive repetition    

[*n]  Repeats for n cycles 
[*]  Repeats for zero or any number of cycles 
[+] Repeats for one or more cycles 
[*n:m]   Repeats for min of n to max of m cycles  
[*n:inf]  Repeats for a minimum of n cycles 
[*0: m]  Either skipped or repeats max of m cycles 

 
 
 
[= ]  Non-consecutive repetition  
 [-> ] GOTO repetition  

 

Examples 
always ({go; req} |=> {!req && ack; data_transfer}); 
 

always ({a} |=> {b[*2]; c}); // if a, then b; b; c sequence 
always ({a} |=> {[*2]; c}); // if a, then -; - ; c sequence 
always ({a} |=> {b[*1:3]; c}); if a then either of sequences:  
   b; c |   b; b; c |   b; b; b; c  
always ({a} |=> {b[*0:3]; c}); if a then either of sequences:  
   c | b; c |   b; b; c |   b; b; b; c  
always ({a} |=> {b[+]; c}); // if a then either of sequence 
   b; c |   b; b; c |   b; b;…..;  b; c  
always ({a} |=> {[*]; b; c}); // Cannot fail. For functional coverage  
// if a then assertion completes when b; c sequence occurs.  
always ({a} |=>  {b[=2]; c});  // If a then two occurrence of b before c;  
always ({a} |=>  {b[->2]; c});  // If a then two occurrence of b any cycle 
before c, but last b must occur in cycle before c;  

Eventually! 
Boolean -> eventualy!  Boolean          
 Boolean -> eventualy!  {SERE}            

// Grant must always occur sometime after req. 
// always  ((req) -> eventually! (grant); 
// always  ((req) -> eventually! {grant; ok}); 

Until 
Boolean  until Boolean         
Boolean -> next  Boolean  until Boolean         
Boolean -> eventually! Boolean  until Boolean      
Boolean -> next  Boolean  
                -> eventually! Boolean until Boolean       
Boolean -> eventually! Boolean 
                -> eventually! Boolean until Boolean       

({ SERE} |=> { SERE}) until Boolean     

 
always (({a; b} |=> {c}) until (rst)); 
always ((state = S1) -> next ((state = S2) until (state=S3))); 
always( req -> eventually! ack until data_xfr;  
always ((state = S1) -> next (state = S2) -> eventually! (state=S3)  
                                        until  done); 
always( req  -> eventually! ack -> eventually! data_xfr until done); 
 
always (({go; req} |=> {!req && ack; data_xfr}) until done); 



Sequence composition operators 
:  sequence fusion.  Two sequences overlap by one cycle 
|  sequence disjunction.   One of two alternative sequences  
                                           hold at the current cycle 
&  non-length-matching sequence conjunction. Two 
sequences both hold at the current cycle, regardless of 
whether they complete in same cycle or in different cycles. 
&& length-matching sequence conjunction.  Two 
sequences both hold at the current cycle, and both complete 
in the same cycle.   

 

    éFusion {a; b} : {c; d} 

                                            éSequence Disjuction {a; b} | {c; d} 

Non-Length-Matching {a; [*]; b} & {c[*1:5]; d}é 

                             Length-Matching {a; [*]; b} && {c[*1:5]; d} é 
 

Named sequences 
Define common sequences by name. 
Creates more readable and reusable code 

// psl default clock = (posedge clk); 
// psl sequence AB = {a; b}; 
// psl sequence CD = {c; d}; 
// psl sequence AB_EV = {a; [*]; b}; 
// psl sequence CD_LIMITED = {c[*1:5]; d}; 
// psl sequence EMBEDDED = {AB; CD}; 
   // psl property TEST1 =  
    //   always ({go} |-> {AB; CD_LIMITED}); 
  // psl property FUSION_TEST =  
    //   always ({go} |=> {AB[*2] }: {CD[*2] }); 
 // psl property DISJUCTION_TEST =  
    //   always ({go} |=> {AB} | {CD}); 
 // psl property SEQUENCE_NON_MATCH_TEST =  
    //   always ({go} |=> {AB_EV} & {CD_LIMITED}); 

Verification Unit 
Assertions in external files 

module reqack // in file reqack.v  
  (…);   …              
endmodule 
 
vunit v1 (reqack) { 
   //in file reqack.vu 
     default clock = (posedge clk); 
    property REQ_ACK = always ((req && bus_available) -> (ack)); 
    property ABCD_NEXT = always (a -> next b -> next c -> next d);  
    property ABCD_IF = always (a -> b -> c -> d);  
} 

Verification directives 
assert Property ; 
assume Property ; 
assume_guarantee Property ; 
restrict Sequence ; 
restrict_guarantee Sequence ; 
cover Sequence ; 
fairness Boolean ;  
strong fairness Boolean , Boolean ; 

 
Verify  a property holds. 
Constrain verification  (e.g.,  input behavior) so that a property holds. 
Property and assumed property both hold.  
Initialize design to get to a specific state before checking assertions. 
Constrain design so sequence holds and verify restrict sequence holds. 
Check if a certain path was covered by the verification space 
Guide to verify the property only over fair paths. 
  A path is fair if every fairness constraint holds along the path. 

PSL in Design Process 
• Requirements 
• Synthesizable HDL  
• Testbench 
• Integration into application 
• Verification  
• Documentation 

 
. Clarifies properties of specifications.  Great for requirements review. 
. Documents design implementation properties.  Great for code reviews 
. Facilitates TB designs.  Eases uncertainties in microcycle timing of DUT. 
. Detects errors during design integration. 
. Detects errors, white-box verification.  Provides functional verification. 
. Properties and simulation with assertion metrics enhance documentation.  

Guide also available at http://www.vhdlcohen.com/     Models and Papers 

 


