COMS30026 Design Verification
Assertion-based

Verification (Part Ill)

Kerstin Eder

Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

-Vé University of Department 0[fﬁ
g BRISTOL COMPUTER SCIENCE ¢

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

CASE STUDY:
IDENTIFYING DUV PROPERTIES

Example FIFO DUV

Example DUV Specification - Inputs

data_in [7:0]
wr
rd

clear
clk

= |[nputs:
— wr indicates valid data is driven on the data_in bus
— data_in is the data to be pushed into the DUV

— rd pops the next data item from the DUV in the next cycle

— clear resets the DUV \

Example DUV Specification - Outputs

data_in [7:0] data_out_valid
wr data_out [7:0]
rd -
clear empty

>
clk full

>

= Outputs:

— data_out_valid indicates that valid data is driven on the
data_out bus

— data_out is the data item requested from the DUV
— empty indicates that the DUV is empty
— full indicates that the DUV is full |

DUV Specification

= High-Level functional specification of DUV
— The design is a FIFO.
— Reading and writing can be done in the same cycle.

— Data becomes valid for reading one cycle after it is
written.

— No data is returned for a read when the DUV is empty.
— Clearing takes one cycle.

— During clearing read and write are disabled.
— Inputs arriving during a clear are ignored.

— The FIFO is 8 entries deep.

ldentifying Properties for the FIFO block

An invariant

: roperty.
Black box view: property

— Empty and full are never asserted together.
— After clear the FIFO is empty.
— After writing 8 data items the FIFO is full.

— Data items are moving through the FIFO unchanged in
terms of data content and in terms of data order.

— No data is duplicated.
— No data is lost.

Implementation of the FIFO

= The actual implementation of

the FIFO design is a circular ~ nex _, —
buffer: "

— Logic to determine if the FIFO is
full or empty: next read and

next write as well asthe
data counter

— valid bits need to be
Implemented to indicate whether
a data entry is valid or not

— Wrap conditions need to be
Implemented to achieve a
circular buffer. |

data valid

next_
read

data_counter

ldentifying Properties for the FIFO block

White box view:

— The value range of the next read and next write
pointers is between 0 and 7.

— The data counter ranges from O to 8.

— The data in the FIFO is not changed during a clear.

— For each valid read the next read pointeris
Incremented.

— For each valid write the next write pointeris
Incremented.

— Data is written only to the slot indicated by
next write.

— Data is read only from the slot indicated by
next read.

— When reading and writing in the same cycle the

data counter remains unchanged. .
» What about a RW from an empty/full FIFO?

FORMALIZING PROPERTIES

Property Formalization

= Property Formalization Languages

— Most commonly used languages:

= SVA and
= PSL [IEEE - 1850]

— Assertions can be combinatorial

property mutex;

{ ! (empty && full)) BOOIea_n
end property expression

10

Property Formalization

= Property Formalization Languages
— Most commonly used languages:

= SVA and
= PSL [IEEE — 1850]
— Assertions can be combinatorial Temporal
property mutex; expression
{ | (empty && full) } Booleqn in form of an
end property expression implication

— and there are also temporal assertions.

property req followed by ack;
@ (posedge clk){ Srose (req) |[=> ##[0:1] ack }

end property

pre-condition main cond|t|oE
(antecedent) (consequent)

How Assertions work during Simulation

= Temporal properties can be in one of 4
states during simulation:
— inactive (no match), active, pass or falil

property req followed by ack;
@ (posedge clk){ Srose (req) |=> ##[0:1] ack }

end property
P req ack: assert property req followed by ack;

clk |
req |
ack
v \ v \ \ 4 \
active pass active pass active fail .9

12

How Assertions work during Simulation

= Temporal properties can be in one of 4
states during simulation:
— inactive (no match), active, pass or falil

property req followed by ack;
@ (posedge clk){ Srose (req) |=> ##[0:1] ack }

end property
P req ack: assert property req followed by ack;

clk |
req |
ack
v \ v \ \ 4 \
active pass active pass active fail .9

13

Writing Properties using SVA

To formalize basic properties using SVA we need to
learn about:

= [mplications
= Sequences
— Cycle delay and repetition
" Srose, Sfell, $Spast, $stable

14

Implications

= Properties typically take the form of an implication.

= SVA has two implication operators:

_ _ o non-overlapping
| => represents logical implication implication

— A|=>B is equivalentto (not A) or B,
where B is sampled one cycle after A.

req gnt: assert property (reg |=> gnt);

clk
req
gnt. —— | : :
\ 4 ! ! ! \4 \ 4
fail pass fail

15

Implications

= Properties typically take the form of an implication.

= SVA has two implication operators: .
_ _ o non-overlapping
= | => represents logical implication implication
— A|=>B is equivalentto (not A) or B,
where B is sampled one cycle after A.

req gnt: assert property (reg |=> gnt);

clk
req
gnt | : :
ﬁJ : : : @Ls %ﬁ
req_gnt X/ X/
true -

16

Implications

= SVA has another implication operator:

= | ->represents logical implication
- A|->B isequivalentto (not A) or B,
where B is sampled in the same cycle as 2.

reqg gnt vl: assert property (reqg [=> gnt);

req gnt v2: assert property (req |[-> ##1 gnt);

The overlapping implication Delay operator ##N
operator |-> specifies behaviour in delays by N cycles,
the same clock cycle as the one in where N is a positive

which the LHS is evaluated. integer including 0.

Both properties above are specifying the same functional behavic)

17

Sequences

Useful to specify complex temporal relationships.

Constructing sequences:
— A Boolean expression is the simplest sequence.

— ## concatenates two sequences.

— ##N cycle delay operator - advances time by N clock cycles.
" a ##3 b bistrue 3 clock cycles after a

- ##[N:M] specifies a timing delay range.
" a ##[0:3] b bistrue 0,1,2 or 3 clock cycles after a

— [*N] consecutive repetition operator
— Allows to specify a sequence or expression that is consecutively

repeated with one cycle delay between each repetition.
" a [*2] exactly two repetitions of a in consecutive clock cycles

- [*N:M] consecutive repetition within a specified range
m 3g[*1:3] coversa,a ##1 aora ##1 a ##1 a -

18

Useful SystemVerilog Functions for
Property Specification

= Srose and $fell

— Compares value of its operand in the current
cycle with the value this operand had in the
previous cycle.

B Srose
— Detects a transitionto 1 (true)
" Sfell

— Detects a transitionto 0 (false)
= Example:

assert property (Srose(req) |=> Srose(gnt))i y))

19

Useful SystemVerilog Functions for
Property Specification

" Spast (expr)

— Returns the value of expr in the previous cycle.
= Example:

assert property (gnt |-> $past(req));
" Spast (expr, N)
— Returns the value of expr N cycles ago.

" Sstable (expr)

— Returns true when the previous value of expr is the
same as the current value of expr.

— Represents: $past (expr) == expr |

20

CASE STUDY:
FORMALIZING PROPERTIES

Example FIFO DUV

21

Formalization of key DUV Assertions

= System Verilog Assertion for:
= Empty and full are never asserted together.

This is a safety Is this a safety or a
property! liveness property? Why?

property not empty and full;

@ (posedge clk) ! (empty && full);

endproperty

mutex : assert property (not empty and full);

This label is useful for debug.
22

Formalization of key DUV Assertions

= System Verilog Assertion for:
= Empty and full are never asserted together.

property not empty and full;

@ (posedge clk) S$onehotO ({empty, full});
endproperty

mutex : assert property (not empty and full);

Alternative encoding: Sonehot0 returns true when
zero or one bit of a multi-bit expression is high.

23

Formalization of key DUV Assertions

= System Verilog Assertion for:
= After clear the FIFO is empty.

property empty after clear;
@ (posedge clk) (clear |-> empty);
endproperty

a empty after clear : assert property (empty after clear);

Beware of property bugs! Know your operators:

" seql |-> seg2, seq?2 starts in last cycle of seql (overlap)
" segl |=> seg2, seg2 starts in first cycle after seql

We need: @ (posedge clk) (clear |=> empty):;)

24

Formalization of key DUV Assertions

= System Verilog Assertion for:
= On empty after one write the FIFO is no longer empty.

property not empty after write on empty;
@ (posedge clk) (empty && wr |=> lempty);
endproperty

a not empty after write on empty : assert property
(not _empty after write on_ empty) ;

Assertions can be Assertions can also

monitored during be used for formal

simulation. property checking.
Challenge:

There are many more interesting assertions, |

25

Corner Case Properties

When the FIFO is empty and there is a write at the same time as a
read (from empty), then the read should be ignored.
property empty write ignore read;
@ (posedge clk) (empty && wr && rd |=>
data counter == $past(data counter)+l);
endproperty

a ccl : assert property (empty write_ ignore read);

When the FIFO is full and there is a read at the same time as a write,
then the write (to full) should be ignored.
property full read ignore write
@ (posedge clk) {full && rd && wr |=>
data counter == $past(data counter)-1};
endproperty

a _cc2: assert property (full read ignore write);

26

USING ASSERTIONS

27

All my assertions pass — now what?

= Remember, simulation can only show the
presence of bugs, but never prove their absence!

= An assertion has never “fired”.
— What does this mean?

— Does not necessarily mean that it can’t be violated!
= Unless simulation is exhaustive...,
which in practice it never will be.
— It might not have fired because it was never active.

— Most assertions have the form of implications.
— Implications are satisfied when the pre-condition is
false!
* These are vacuous passes.
= We need to know how often the property passes
non-vacuously! -

28

Assertion Coverage

= Measures how often an assertion condition
has been evaluated.

— Many simulators count only non-vacuous

passes.

assert property ((sell || sel2) |=> ack);

— Add assertion coverage points using:
cover property (sell || sel2);

— Coverage can also be collected on sub-
expressions:

cover property (sell);
cover property (sel2);

29

Overcoming the Observability Problem

= |f a design property is violated during
simulation, then the DUV fails to operate
according to the original design intent.

BUT:

= Symptoms of low-level bugs are often not easy to
observe/detect.

= Activation of a faulty statement may not be enough
for the bug to propagate to an observable output.

Assertion-Based Verification:

During simulation, assertions are continuously monitored.

The assertion immediately fires when it is violated and in the area of
the design where it occurs.

Debugging and fixing an assertion failure is much more efficient than
tracing back the cause of a failure.

|
30

Costs and benefits of ABV

= Costs include:

= Benefits include:

31

Costs and benefits of ABV

= Costs include:
— Simulation speed
— Writing the assertions
— Maintaining the assertions

= Benefits include:

32

Costs and benefits of ABV

= Costs include: Intellectual step of

— Simulation speed property capture forces you
— Writing the assertions to think earlier!

— Maintaining the assertions

= Benefits include:

— Explicit expression of designer intent and specification requirements
» Specification errors can be identified earlier
» Design intent is captured more formally

— ABYV enables finding more bugs faster

— Improved localisation of bugs for debug using assertion labels

— ABV promotes the measurement of functional coverage

— Improved qualification of test suite based on assertion coverage

— ABYV facilitates the uptake of formal verification B

— Re-use the formal properties throughout design life cycle |
33

Do assertions really work?

= Assertions are able to detect a significant percentage

of design failures:

[Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

34% of all bugs were found by assertions on DEC Alpha
21164 project [Kantrowitz and Noack 1996

17% of all bugs were found by assertions on Cyrix M3(p1)
project [Krolnik 1998]

25% of all bugs were found by assertions on DEC Alpha
21264 project - The DEC 21264 Microprocessor [Taylor et
al. 1998]

25% of all bugs were found by assertions on Cyrix M3(p2)
project [Krolnik 1999]

85% of all bugs were found using OVL assertions on HP
[Foster and Coelho 2001]

Assertions should be an integral part of a verification methodology.

34

ABV Methodology

Use assertions as a method of documenting the exact
intent of the specification, high-level design, and
Implementation

Include assertions as part of the design review to ensure
that the intent is correctly understood and implemented

Write design assertions when writing the RTL code
— The benefits of adding assertions at later stage are much lower

Assertions should be added whenever new functionality
IS added to the design to capture intent and to assert
correctness of the new features

Keep properties and sequences simple

— Build complex assertions out of simple, short
assertions/sequences |

35

Summary

In ABV we have covered:

What is an assertion?

Use of assertions

Safety and liveness properties
Implementation vs specification assertions

Introduction to basics of SVA as a property
formalization language

Importance of Assertion Coverage
Costs vs benefits of using ABV

36

