
COMS30026 Design Verification

Assertion-based
Verification (Part II)

Department of
COMPUTER SCIENCE

Kerstin Eder
Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

2

CASE STUDY:
IDENTIFYING DUV PROPERTIES
Example FIFO DUV

3

Example DUV Specification - Inputs

§ Inputs:
– wr indicates valid data is driven on the data_in bus
– data_in is the data to be pushed into the DUV
– rd pops the next data item from the DUV in the next cycle
– clear resets the DUV

DUV

clk
clear

wr
data_in [7:0]

rd

data_out [7:0]

empty
full

data_out_valid

4

Example DUV Specification - Outputs

§ Outputs:
– data_out_valid indicates that valid data is driven on the

data_out bus
– data_out is the data item requested from the DUV
– empty indicates that the DUV is empty
– full indicates that the DUV is full

DUV

clk
clear

wr
data_in [7:0]

rd
data_out [7:0]

empty
full

data_out_valid

5

DUV Specification
§ High-Level functional specification of DUV

– The design is a FIFO.
– Reading and writing can be done in the same cycle.
– Data becomes valid for reading one cycle after it is

written.
– No data is returned for a read when the DUV is empty.
– Clearing takes one cycle.
– During clearing read and write are disabled.
– Inputs arriving during a clear are ignored.
– The FIFO is 8 entries deep.

6

Identifying Properties for the FIFO block

Black box view:
– Empty and full are never asserted together.
– After clear the FIFO is empty.
– After writing 8 data items the FIFO is full.
– Data items are moving through the FIFO unchanged in

terms of data content and in terms of data order.
– No data is duplicated.
– No data is lost.

An invariant
property.

7

Implementation of the FIFO

next_
write

next_
read

validdata
§ The actual implementation of

the FIFO design is a circular
buffer:
– Logic to determine if the FIFO is

full or empty: next_read and
next_write as well as the
data_counter

– valid bits need to be
implemented to indicate whether
a data entry is valid or not

– Wrap conditions need to be
implemented to achieve a
circular buffer.

data_counter

8

Identifying Properties for the FIFO block
White box view:

– The value range of the next_read and next_write
pointers is between 0 and 7.

– The data_counter ranges from 0 to 8.
– The data in the FIFO is not changed during a clear.
– For each valid read the next_read pointer is

incremented.
– For each valid write the next_write pointer is

incremented.
– Data is written only to the slot indicated by
next_write.

– Data is read only from the slot indicated by
next_read.

– When reading and writing in the same cycle the
data_counter remains unchanged.
§ What about a RW from an empty/full FIFO?

9

FORMALIZING PROPERTIES

10

Property Formalization
§ Property Formalization Languages

– Most commonly used languages:
§ SVA and
§ PSL [IEEE – 1850]

– Assertions can be combinatorial
property mutex;

{ !(empty && full) }

end property

Boolean
expression

11

Property Formalization
§ Property Formalization Languages

– Most commonly used languages:
§ SVA and
§ PSL [IEEE – 1850]

– Assertions can be combinatorial
property mutex;

{ !(empty && full) }

end property

– and there are also temporal assertions.
property req_followed_by_ack;

@(posedge clk){ $rose (req) |=> ##[0:1] ack }

end property

Boolean
expression

Temporal
expression

in form of an
implication

main condition
(consequent)

pre-condition
(antecedent)

12

§ Temporal properties can be in one of 4
states during simulation:
– inactive (no match), active, pass or fail
property req_followed_by_ack;

@(posedge clk){ $rose (req) |=> ##[0:1] ack }

end property

p_req_ack: assert property req_followed_by_ack;

How Assertions work during Simulation

clk
req
ack

active active activepass pass fail

13

§ Temporal properties can be in one of 4
states during simulation:
– inactive (no match), active, pass or fail
property req_followed_by_ack;

@(posedge clk){ $rose (req) |=> ##[0:1] ack }

end property

p_req_ack: assert property req_followed_by_ack;

How Assertions work during Simulation

clk
req
ack

active active activepass pass fail

14

Writing Properties using SVA

§ Implications
§ Sequences

– Cycle delay and repetition
§ $rose, $fell, $past, $stable

To formalize basic properties using SVA we need to
learn about:

15

Implications
§ Properties typically take the form of an implication.
§ SVA has two implication operators:
§ |=> represents logical implication

– A|=>B is equivalent to (not A) or B,
where B is sampled one cycle after A.

req_gnt: assert property (req |=> gnt);

clk
req
gnt

pass failfail

non-overlapping
implication

16

Implications
§ Properties typically take the form of an implication.
§ SVA has two implication operators:
§ |=> represents logical implication

– A|=>B is equivalent to (not A) or B,
where B is sampled one cycle after A.

req_gnt: assert property (req |=> gnt);

clk
req
gnt

pass failfail
req_gnt
true

non-overlapping
implication

✗ ✗

17

Implications
§ SVA has another implication operator:
§ |-> represents logical implication

– A|->B is equivalent to (not A) or B,
where B is sampled in the same cycle as A.

req_gnt_v1: assert property (req |=> gnt);

req_gnt_v2: assert property (req |-> ##1 gnt);

Both properties above are specifying the same functional behaviour.

The overlapping implication
operator |-> specifies behaviour in
the same clock cycle as the one in

which the LHS is evaluated.

Delay operator ##N
delays by N cycles,

where N is a positive
integer including 0.

18

Sequences
§ Useful to specify complex temporal relationships.
§ Constructing sequences:

– A Boolean expression is the simplest sequence.
– ## concatenates two sequences.
– ##N cycle delay operator - advances time by N clock cycles.

§ a ##3 b b is true 3 clock cycles after a

– ##[N:M] specifies a timing delay range.
§ a ##[0:3] b b is true 0,1,2 or 3 clock cycles after a

– [*N] consecutive repetition operator
– Allows to specify a sequence or expression that is consecutively

repeated with one cycle delay between each repetition.
§ a [*2] exactly two repetitions of a in consecutive clock cycles

– [*N:M] consecutive repetition within a specified range
§ a[*1:3] covers a, a ##1 a or a ##1 a ##1 a

19

Useful SystemVerilog Functions for
Property Specification

§ $rose and $fell
– Compares value of its operand in the current

cycle with the value this operand had in the
previous cycle.

§ $rose
– Detects a transition to 1 (true)

§ $fell
– Detects a transition to 0 (false)

§ Example:
assert property ($rose(req) |=> $rose(gnt));

20

Useful SystemVerilog Functions for
Property Specification

§ $past(expr)
– Returns the value of expr in the previous cycle.
§ Example:

assert property (gnt |-> $past(req));

§ $past(expr, N)
– Returns the value of expr N cycles ago.

§ $stable(expr)
– Returns true when the previous value of expr is the

same as the current value of expr.
– Represents: $past(expr) == expr

21

CASE STUDY:
FORMALIZING PROPERTIES
Example FIFO DUV

22

Formalization of key DUV Assertions
§ System Verilog Assertion for:

§ Empty and full are never asserted together.

property not_empty_and_full;
@(posedge clk) !(empty && full);
endproperty
mutex : assert property (not_empty_and_full);

Is this a safety or a
liveness property? Why?

This label is useful for debug.

This is a safety
property!

23

Alternative encoding: $onehot0 returns true when
zero or one bit of a multi-bit expression is high.

§ System Verilog Assertion for:
§ Empty and full are never asserted together.

property not_empty_and_full;
@(posedge clk) $onehot0({empty,full});
endproperty

mutex : assert property (not_empty_and_full);

Formalization of key DUV Assertions

24

Beware of property bugs! Know your operators:

§ seq1 |-> seq2, seq2 starts in last cycle of seq1 (overlap)
§ seq1 |=> seq2, seq2 starts in first cycle after seq1

We need: @(posedge clk) (clear |=> empty);

§ System Verilog Assertion for:
§ After clear the FIFO is empty.

property empty_after_clear;
@(posedge clk) (clear |-> empty);
endproperty
a_empty_after_clear : assert property (empty_after_clear);

Formalization of key DUV Assertions

25

Formalization of key DUV Assertions

§ System Verilog Assertion for:
§ On empty after one write the FIFO is no longer empty.

property not_empty_after_write_on_empty;
@ (posedge clk) (empty && wr |=> !empty);
endproperty
a_not_empty_after_write_on_empty : assert property

(not_empty_after_write_on_empty);

Assertions can be
monitored during

simulation.

Assertions can also
be used for formal
property checking.

Challenge:
There are many more interesting assertions.

26

Corner Case Properties
§ When the FIFO is empty and there is a write at the same time as a

read (from empty), then the read should be ignored.
property empty_write_ignore_read;
@(posedge clk)(empty && wr && rd |=>

data_counter == $past(data_counter)+1);
endproperty
a_cc1 : assert property (empty_write_ignore_read);

§ When the FIFO is full and there is a read at the same time as a write,
then the write (to full) should be ignored.

property full_read_ignore_write
@ (posedge clk) {full && rd && wr |=>

data_counter == $past(data_counter)-1};
endproperty
a_cc2: assert property (full_read_ignore_write);

27

USING ASSERTIONS

28

§ Remember, simulation can only show the
presence of bugs, but never prove their absence!

§ An assertion has never “fired”.
– What does this mean?
– Does not necessarily mean that it can’t be violated!

§ Unless simulation is exhaustive...,
which in practice it never will be.

– It might not have fired because it was never active.
– Most assertions have the form of implications.
– Implications are satisfied when the pre-condition is

false!
§ These are vacuous passes.
§ We need to know how often the property passes

non-vacuously!

All my assertions pass – now what?

29

§ Measures how often an assertion condition
has been evaluated.
– Many simulators count only non-vacuous

passes.

assert property ((sel1 || sel2) |=> ack);

– Add assertion coverage points using:
cover property (sel1 || sel2);

– Coverage can also be collected on sub-
expressions:
cover property (sel1);
cover property (sel2);

Assertion Coverage

30

Overcoming the Observability Problem
§ If a design property is violated during

simulation, then the DUV fails to operate
according to the original design intent.

BUT:
§ Symptoms of low-level bugs are often not easy to

observe/detect.
§ Activation of a faulty statement may not be enough

for the bug to propagate to an observable output.

Assertion-Based Verification:
§ During simulation, assertions are continuously monitored.
§ The assertion immediately fires when it is violated and in the area of

the design where it occurs.
§ Debugging and fixing an assertion failure is much more efficient than

tracing back the cause of a failure.

31

Costs and benefits of ABV
§ Costs include:

§ Benefits include:

32

Costs and benefits of ABV
§ Costs include:

– Simulation speed
– Writing the assertions
– Maintaining the assertions

§ Benefits include:

33

Costs and benefits of ABV
§ Costs include:

– Simulation speed
– Writing the assertions
– Maintaining the assertions

§ Benefits include:
– Explicit expression of designer intent and specification requirements

§ Specification errors can be identified earlier
§ Design intent is captured more formally

– ABV enables finding more bugs faster
– Improved localisation of bugs for debug using assertion labels
– ABV promotes the measurement of functional coverage
– Improved qualification of test suite based on assertion coverage
– ABV facilitates the uptake of formal verification
– Re-use the formal properties throughout design life cycle

Intellectual step of
property capture forces you

to think earlier!

34

§ Assertions are able to detect a significant percentage
of design failures:

§ Assertions should be an integral part of a verification methodology.

Do assertions really work?

[Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

35

ABV Methodology
§ Use assertions as a method of documenting the exact

intent of the specification, high-level design, and
implementation

§ Include assertions as part of the design review to ensure
that the intent is correctly understood and implemented

§ Write design assertions when writing the RTL code
– The benefits of adding assertions at later stage are much lower

§ Assertions should be added whenever new functionality
is added to the design to capture intent and to assert
correctness of the new features

§ Keep properties and sequences simple
– Build complex assertions out of simple, short

assertions/sequences

36

Summary
In ABV we have covered:
§ What is an assertion?
§ Use of assertions
§ Safety and liveness properties
§ Implementation vs specification assertions
§ Introduction to basics of SVA as a property

formalization language
§ Importance of Assertion Coverage
§ Costs vs benefits of using ABV

37

