
COMS30026 Design Verification

Assertion-based
Verification

Department of
COMPUTER SCIENCE

Kerstin Eder
Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

2

What is an assertion?
§ An assertion is a statement that a particular

property is required to be true.
– A property is a Boolean-valued expression, e.g. in

SystemVerilog.
§ Assertions can be checked either during

simulation or using a formal property checker.

3

What is an assertion?
§ An assertion is a statement that a particular

property is required to be true.
– A property is a Boolean-valued expression, e.g. in

SystemVerilog.
§ Assertions can be checked either during

simulation or using a formal property checker.
§ Assertions have been used in SW development

for a long time.
– assert.h in standard library of C

#include <assert.h>
– C preprocessor macro assert()
– Used to detect NULL pointers, out-of-range data,

ensure loop invariants, pre- and post-conditions, etc.

Assertions in C code

5

Assertions in C code

6

Assertions in C code

7

HW Assertions
§ Combinatorial (i.e. “zero-time”) conditions

– ensure functional correctness
– must be valid at all times

§ “The buffer never overflows.”
§ “The register always holds a single-digit value.”
§ “The state machine encoding is one hot.”

8

HW Assertions
§ Combinatorial (i.e. “zero-time”) conditions

– ensure functional correctness
– must be valid at all times

§ “The buffer never overflows.”
§ “The register always holds a single-digit value.”
§ “The state machine encoding is one hot.”

§ Temporal conditions
– to verify sequential functional behaviour over a period

of time
§ “The grant signal must be asserted for a single clock cycle.”
§ “A request must always be followed by a grant or an abort

within 5 clock cycles.”
– Temporal assertion languages facilitate specification of

temporal properties.
§ System Verilog Assertions (SVA)
§ Property Specification Language (PSL)

9

The Open Verification Library
§ Revolution through Foster

& Bening’s OVL for
Verilog in early 2000
– Clever way of encoding a

re-usable assertion library
originally in Verilog. J

– 33 assertion checkers
– OVL language support for:

Verilog, VHDL, PSL, SVA

10

The Open Verification Library
§ Revolution through Foster

& Bening’s OVL for
Verilog in early 2000
– Clever way of encoding a

re-usable assertion library
originally in Verilog. J

– 33 assertion checkers
– OVL language support for:

Verilog, VHDL, PSL, SVA

11

The Open Verification Library
§ Revolution through Foster

& Bening’s OVL for
Verilog in early 2000
– Clever way of encoding a

re-usable assertion library
originally in Verilog. J

– 33 assertion checkers
– OVL language support for:

Verilog, VHDL, PSL, SVA

§ Assertions have now
become very popular for
Verification, giving rise to
Assertion-Based
Verification (and also
Assertion-Based Design).

OVL is an
Accellera Standard
http://www.accellera.org/downloads/
standards/ovl

http://www.accellera.org/downloads/standards/ovl

12

SAFETY & LIVENESS

13

Safety Properties
§ Safety: Something bad does not happen

– The FIFO does not overflow.
– The system does not allow more than one

process at a time to modify the shared memory.
– Requests are answered within 5 clock cycles.

14

Safety Properties
§ Safety: Something bad does not happen

– The FIFO does not overflow.
– The system does not allow more than one

process at a time to modify the shared memory.
– Requests are answered within 5 clock cycles.

§ More formally: A safety property is a property
for which any path violating the property has a
finite prefix such that every extension of the prefix
violates the property. [Accellera PSL-1.1 2004]

Safety properties can be falsified by a finite
simulation run.

15

Liveness Properties
§ Liveness: Something good eventually happens

– The decoding algorithm eventually terminates.
– Every request is eventually acknowledged.

§ More formally: A liveness property is a property
for which any finite path can be extended to a path
satisfying the property. [Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

16

Liveness

§ Assertion P must eventually be valid after
the event occurs.

[Credits: Bening & Foster. Principles of Verifiable RTL Design. Kluwer 2001.]

event Event 2

Liveness time

¬P¬P¬P¬P

17

Liveness

§ Assertion P must eventually be valid after
the event occurs.

[Credits: Bening & Foster. Principles of Verifiable RTL Design. Kluwer 2001.]

event Event 2

P

Liveness time

18

Von André Karwath aka Aka -
Eigenes Werk, CC BY-SA 2.5,
https://commons.wikimedia.org/

w/index.php?curid=103762

19

Von André Karwath aka Aka -
Eigenes Werk, CC BY-SA 2.5,
https://commons.wikimedia.org/

w/index.php?curid=103762

20

Liveness Properties
§ Liveness: Something good eventually happens

– The decoding algorithm eventually terminates.
– Every request is eventually acknowledged.

§ More formally: A liveness property is a property
for which any finite path can be extended to a path
satisfying the property. [Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

In theory, liveness properties can only be falsified
by an infinite simulation run.
– Practically, we often assume that the “graceful end-of-

test” represents infinite time.
§ If the good thing did not happen after this period, we assume

that it will never happen, and thus the property is falsified.

21

Bounded Liveness

§ Assertion P must eventually be valid after
the event occurs

[Credits: Bening & Foster. Principles of Verifiable RTL Design. Kluwer 2001.]

event

P

Liveness time

22

Bounded Liveness

§ Assertion P must eventually be valid after
the start event trigger occurs and before
the end event trigger occurs.

[Credits: Bening & Foster. Principles of Verifiable RTL Design. Kluwer 2001.]

start event end event

P

Liveness time

23

Invariant

§ Invariant Assertion Window:
Assertion P is checked and expected to hold
after the start event occurs and continues to
be checked and is expected to hold until the
end event.

P P P P P P P P

Invariant time

start event end event

[Credits: Bening & Foster. Principles of Verifiable RTL Design. Kluwer 2001.]

24

EXAMPLE OVL CHECKERS

25

26
26

27

28
28

Number of cycles after start_event is TRUE to wait to
check that the value of test_expr is TRUE. Default: 1.

29
29

30
30

31http://www.accellera.org/
downloads/standards/ovl

http://www.accellera.org/downloads/standards/ovl

32

http://www.accellera.org/
downloads/standards/ovl

http://www.accellera.org/downloads/standards/ovl

33

WHERE DO ASSERTIONS
COME FROM?

Who writes the assertions?

DUV

System
Architects

Designers

Verification
Engineers

IP
Providers

Standards

35

Implementation Assertions
§ Also called “design” assertions.

– Specified by the designer.
§ Encode designer’s assumptions.

– Interface assertions:
§ Catch different interpretations between individual designers.

– Conditions of design misuse or design faults:
§ detect buffer over/under flow
§ detect buffer read & write at the same time when only one is

allowed
§ Implementation assertions can detect

discrepancies between design assumptions and
implementation.

§ But implementation assertions won’t detect
discrepancies between functional intent and
design! (Remember: Verification Independence!)

36

Specification Assertions
§ Also called “intent” assertions

– Often high-level properties.
§ Specified by architects, verification engineers, IP

providers, standards.
§ Encode expectations of the design based on

understanding of functional intent.
§ Provide a “functional error detection” mechanism.
§ Supplement error detection performed by self-

checking testbenches.
– Instead of using (implementing) a monitor and checker,

in many cases writing a block-level assertion can be
much simpler.

37

End of Part I

38

