
COMS31700 Design Verification:
 Assertion-based

Verification

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

What is an assertion?
§  An assertion is a statement that a particular property is

required to be true.
–  A property is a Boolean-valued expression, e.g. in SystemVerilog.

§  Assertions can be checked either during simulation or using
a formal property checker.

§  Assertions have been used in SW design for a long time.
–  assert() function is part of C #include <assert.h>
–  Used to detect NULL pointers, out-of-range data, ensure loop

invariants, pre- and post-conditions, etc.

3

Assertions in C code

4

Assertions in C code

5

The Open Verification Language
§  Revolution through Foster

& Bening’s OVL for
Verilog in early 2000
–  Clever way of encoding re-

usable assertion library
originally in Verilog. J

–  33 assertion checkers
–  Language support for:

Verilog, VHDL, PSL, SVA

§  Assertions have now
become very popular for
Verification, giving rise to
Assertion-Based
Verification (and also
Assertion-Based Design).

OVL is an
Accellera Standard
http://www.accellera.org/downloads/
standards/ovl

6

7

TYPE NAME PARAMETERS PORTS DESCRIPTION
Single-Cycle assert_always #(severity_level, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust alwayshold
TwoCycles assert_always_on_edge #(severity_level,edge_type, property_type,msg, coverage_level) (clk, reset_n,sampling_event, test_expr) test_expr is true immediately followingthespecifiededge(edge_type: 0=no-edge, 1=pos, 2=neg, 3=any)
n-Cycles assert_change #(severity_level,width,num_cks,action_on_new_start, property_type,msg,

coverage_level)
(clk, reset_n,start_event, test_expr) test_exprmust changewithinnum_cksof start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)

n-Cycles assert_cycle_sequence #(severity_level,num_cks,necessary_condition, property_type,msg, coverage_level) (clk, reset_n,event_sequence) if the initial sequenceholds, the final sequencemust alsohold(necessary_condition: 0=trigger-on-most, 1=trigger-on-first, 2=trigger-on-first-
unpipelined)

TwoCycles assert_decrement #(severity_level,width,value, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr changes, itmust decrement by thevalueparameter (modulo 2̂ width)
TwoCycles assert_delta #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr changes, thedeltamust be>=minand<=max
SingleCycle assert_even_parity #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust haveanevenparity, i.e. anevennumber of bitsasserted
TwoCycles assert_fifo_index #(severity_level,depth,push_width,pop_width, property_type,msg, coverage_level,

simultaneous_push_pop)
(clk, reset_n,push,pop) FIFOpointersshouldnever overflowor underflow

n-Cycles assert_frame #(severity_level,min_cks,max_cks,action_on_new_start, property_type,msg,
coverage_level)

(clk, reset_n,start_event, test_expr) test_exprmust not holdbeforemin_ckscycles, butmust holdat least oncebymax_ckscycles (action_on_new_start: 0=ignore, 1=restart,
2=error)

n-Cycles assert_handshake #(severity_level,min_ack_cycle,max_ack_cycle, req_drop,deassert_count,
max_ack_length, property_type,msg, coverage_level)

(clk, reset_n, req,ack) reqandackmust followthespecifiedhandshakingprotocol

Single-Cycle assert_implication #(severity_level, property_type,msg, coverage_level) (clk, reset_n,antecedent_expr,consequent_expr) if antecedent_expr holds thenconsequent_exprmust hold in thesamecyle
TwoCycles assert_increment #(severity_level,width,value, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr changes, itmust increment by thevalueparameter (modulo 2̂ width)
Single-Cycle assert_never #(severity_level, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust never hold
Single-Cycle assert_never_unknown #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,qualifier, test_expr) test_exprmust never beanunknownvalue, just boolean0or 1
Combinatorial assert_never_unknown_async #(severity_level,width, property_type,msg, coverage_level) (reset_n, test_expr) test_exprmust never gotoanunknownvalueasynchronously, itmust remainboolean0or 1
n-Cycles assert_next #(severity_level,num_cks,check_overlapping,check_missing_start, property_type,

msg, coverage_level)
(clk, reset_n,start_event, test_expr) test_exprmust holdnum_ckscyclesafter start_event holds

TwoCycles assert_no_overflow #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr isatmax, in thenext cycle test_exprmust be>minand<=max
TwoCycles assert_no_transition #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr,start_state,next_state) if test_expr==start_state, in thenext cycle test_exprmust not changetonext_state
TwoCycles assert_no_underflow #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr isatmin, in thenext cycle test_exprmust be>=minand<max
Single-Cycle assert_odd_parity #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust haveanoddparity, i.e. anoddnumber of bitsasserted
Single-Cycle assert_one_cold #(severity_level,width, inactive, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust beone-cold i.e. exactlyonebit set low(inactive: 0=also-all-zero, 1=also-all-ones, 2=pure-one-cold)
Single-Cycle assert_one_hot #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust beone-hot i.e. exactlyonebit set high
Combinatorial assert_proposition #(severity_level, property_type,msg, coverage_level) (reset_n, test_expr) test_exprmust holdasynchronously (not just at aclockedge)
TwoCycles assert_quiescent_state #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,state_expr,check_value,sample_event) state_exprmust equal check_valueonarisingedgeof sample_event (alsocheckedonrisingedgeof `OVL_END_OF_SIMULATION)
Single-Cycle assert_range #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust be>=minand<=max
n-Cycles assert_time #(severity_level,num_cks,action_on_new_start, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr) test_exprmust hold for num_ckscyclesafter start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)
TwoCycles assert_transition #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr,start_state,next_state) if test_expr changes fromstart_state, then it canonlychangetonext_state

n-Cycles assert_unchange #(severity_level,width,num_cks,action_on_new_start, property_type,msg,
coverage_level)

(clk, reset_n,start_event, test_expr) test_exprmust not changewithinnum_cksof start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)

n-Cycles assert_width #(severity_level,min_cks,max_cks, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust hold for betweenmin_cksandmax_ckscycles

Event-bound assert_win_change #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr, end_event) test_exprmust changebetweenstart_event andend_event
Event-bound assert_window #(severity_level, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr,end_event) test_exprmust holdafter thestart_event andupto(and including) theend_event
Event-bound assert_win_unchange #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr,end_event); test_exprmust not changebetweenstart_event andend_event
Single-Cycle assert_zero_one_hot #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust beone-hot or zero, i.e. atmost onebit set high

PARAMETERS USINGOVL DESIGNASSERTIONS INPUTASSUMPTIONS
severity_level +define+OVL_ASSERT_ON Monitors internal signals&Outputs Restrictsenvironment
`OVL_FATAL +define+OVL_MAX_REPORT_ERROR=1
`OVL_ERROR +define+OVL_INIT_MSG Examples Examples
`OVL_WARNING +define+OVL_INIT_COUNT=<tbench>.ovl_init_count *Onehot FSM *Onehot inputs
`OVL_INFO *Hit default case items *Range limitse.g. cachesizes
property_type +libext+.v+.vlib *FIFO/ Stack *Stabilitye.g. cachesizes
`OVL_ASSERT -y<OVL_DIR>/std_ovl *Counters (overflow/increment) *Noback-to-back reqs
`OVL_ASSUME +incdir+<OVL_DIR>/std_ovl * FSMtransitions *Handshakingsequences
`OVL_IGNORE *Xcheckers (assert_never_unknown) *Busprotocol
msg descriptivestring

OVL QUICK REFERENCE (www.eda.org/ovl) Last updated: 28th April 2006

8 http://www.accellera.org/downloads/standards/ovl

9

HW Assertions
HW assertions:
§  combinatorial (i.e. “zero-time”) conditions that ensure

functional correctness
–  must be valid at all times

§  “This buffer never overflows.”
§  “This register always holds a single-digit value.”
§  “The state machine is one hot.”
§  “There are no x’s on the bus when the data is valid.”

and
§  temporal conditions

–  to verify sequential functional behaviour over a period of time
§  “The grant signal must be asserted for a single clock cycle.”
§  “A request must always be followed by a grant or an abort within 5

clock cycles.”
–  Temporal assertion languages facilitate specification of temporal

properties.
§  System Verilog Assertions (SVA)
§  PSL

10

Who writes the assertions?

DUV

System
Architects

Designers

Verification
Engineers

IP
Providers

Standards

Types of Assertions

12

Types of Assertions: Implementation Assertions

§  Also called “design” assertions.
–  Specified by the designer.

§  Encode designer’s assumptions.
–  Interface assertions:

§  Catch different interpretations between individual designers.
–  Conditions of design misuse or design faults:

§  detect buffer over/under flow
§  detect buffer read & write at the same time when only one is

allowed
§  Implementation assertions can detect

discrepancies between design assumptions and
implementation.

§  But implementation assertions won’t detect
discrepancies between functional intent and
design! (Remember: Verification Independence!)

13

Types of Assertions: Specification Assertions

§  Also called “intent” assertions
–  Often high-level properties.

§  Specified by architects, verification engineers, IP
providers, standards.

§  Encode expectations of the design based on
understanding of functional intent.

§  Provide a “functional error detection” mechanism.
§  Supplement error detection performed by self-

checking testbenches.
–  Instead of using (implementing) a monitor and checker,

in many cases writing a block-level assertion can be
much simpler.

14

Safety Properties
§  Safety: Something bad does not happen

– The FIFO does not overflow.
– The system does not allow more than one

process to use a shared device simultaneously.
– Requests are answered within 5 cycles.

§  More formally: A safety property is a property for
which any path violating the property has a finite prefix
such that every extension of the prefix violates the property.

 [Accellera PSL-1.1 2004]
 Safety properties can be falsified by a finite
simulation run.

15

Liveness Properties
§  Liveness: Something good eventually happens

–  The system eventually terminates.
–  Every request is eventually acknowledged.

§  More formally: A liveness property is a property for which
any finite path can be extended to a path satisfying the
property. [Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

 In theory, liveness properties can only be falsified
by an infinite simulation run.
–  Practically, we often assume that the “graceful end-of-

test” represents infinite time.
§  If the good thing did not happen after this period, we assume

that it will never happen, and thus the property is falsified.

Example FIFO DUV

17

Example DUV Specification - Inputs

§  Inputs:
–  wr indicates valid data is driven on the data_in bus
–  data_in is the data to be pushed into the DUV
–  rd pops the next data item from the DUV in the next cycle
–  clear resets the DUV

DUV

clk
clear

wr

data_in [7:0]

rd

data_out [7:0]

empty

full

data_out_valid

18

Example DUV Specification - Outputs

§  Outputs:
–  data_out_valid indicates that valid data is driven on the

data_out bus
–  data_out is the data item requested from the DUV
–  empty indicates that the DUV is empty
–  full indicates that the DUV is full

DUV

clk
clear

wr

data_in [7:0]

rd
data_out [7:0]

empty

full

data_out_valid

19

DUV Specification

§  High-Level functional specification of DUV
–  The design is a FIFO.
–  Reading and writing can be done in the same cycle.
–  Data becomes valid for reading one cycle after it is

written.
–  No data is returned for a read when the DUV is empty.
–  Clearing takes one cycle.
–  During clearing read and write are disabled.
–  Inputs arriving during a clear are ignored.
–  The FIFO is 8 entries deep.

20

Identifying Properties for the FIFO block

Black box view:
–  Empty and full are never asserted together.
–  After clear the FIFO is empty.
–  After writing 8 data items the FIFO is full.
–  Data items are moving through the FIFO unchanged in

terms of data content and in terms of data order.
–  No data is duplicated.
–  No data is lost.
–  data_out_valid only for valid data, i.e. no x’s in data.

An invariant
property.

21

Identifying Properties for the FIFO block

White box view:
–  The value range of the read and write pointers is

between 0 and 7.
–  The data_counter ranges from 0 to 8.
–  The data in the FIFO is not changed during a clear.
–  For each valid read the read pointer is incremented.
–  For each valid write the write pointer is incremented.
–  Data is written only to the slot indicated by nxt_wr.
–  Data is read only from the slot indicated by nxt_rd.
–  When reading and writing in the same cycle the

data_counter remains unchanged.
§  What about a RW from an empty/full FIFO?

22

Property Formalization
§  Property Formalization Languages

– Most commonly used languages:
§ SVA and
§  PSL [IEEE – 1850]

– Assertions can be combinatorial
property mutex;

 { !(empty && full) }
end property

– or temporal
property req_followed_by_ack;

 @(posedge clk){ $rose (req) |=> ##[0:1] ack }
end property

Boolean
expression

Temporal
expression in

form of an
implication

main condition
(consequent)

pre-condition
(antecedent)

23

§  Temporal properties can be in one of 4
states during simulation:
–  inactive (no match), active, pass or fail

property req_followed_by_ack;
 @(posedge clk){ $rose (req) |=> ##[0:1] ack }

end property

p_req_ack: assert property req_followed_by_ack;

How Assertions work during Simulation

clk
req
ack

active active active pass pass active fail fail

24

Introduction to Writing Properties using SVA

§  Implications
§  Sequences

– Cycle delay and repetition
§  $rose, $fell, $past, $stable

To formalize basic properties using SVA we need to
learn about:

25

Implications
§  Properties typically take the form of an implication.
§  SVA has two implication operators:
§  |=> represents logical implication

–  A|=>B is equivalent to (not A) or B,
 where B is sampled one cycle after A.

req_gnt: assert property (req |=> gnt);

 clk
req
gnt

pass fail fail
req_gnt
true

non-overlapping
implication

✗ ✗

26

Implications
§  SVA has another implication operator:
§  |-> represents logical implication

–  A|->B is equivalent to (not A) or B,
 where B is sampled in the same cycle as A.

req_gnt_v1: assert property (req |=> gnt);

req_gnt_v2: assert property (req |-> ##1 gnt);

Both properties above are specifying the same functional behaviour.

The overlapping implication
operator |-> specifies behaviour in
the same clock cycle as the one in

which the LHS is evaluated.

Delay operator ##N
delays by N cycles,

where N is a positive
integer including 0.

27

Sequences
§  Useful to specify complex temporal relationships.
§  Constructing sequences:

–  A Boolean expression is the simplest sequence.
–  ## concatenates two sequences.
–  ##N cycle delay operator - advances time by N clock cycles.

§  a ##3 b b is true 3 clock cycles after a

–  ##[N:M] specifies a range.
§  a ##[0:3] b b is true 0,1,2 or 3 clock cycles after a

–  [*N] consecutive repetition operator
–  A sequence or expression that is consecutively repeated with one

cycle delay between each repetition.
§  a [*2] exactly two repetitions of a in consecutive clock cycles

–  [*N:M] consecutive repetition with a specified range
§  a[*1:3] covers a, a ##1 a or a ##1 a ##1 a

28

Useful SystemVerilog Functions for
Property Specification

§  $rose and $fell
– Compares value of its operand in the current

cycle with the value this operand had in the
previous cycle.

§  $rose
– Detects a transition to 1 (true)

§  $fell
– Detects a transition to 0 (false)

§  Example:

 assert property ($rose(req) |=> $rose(gnt));

29

Useful SystemVerilog Functions for
Property Specification

§  $past(expr)
–  Returns the value of expr in the previous cycle.
§  Example:

 assert property (gnt |-> $past(req));

§  $past(expr, N)
–  Returns the value of expr N cycles ago.

§  $stable(expr)

–  Returns true when the previous value of expr is the
same as the current value of expr.

–  Represents: $past(expr) == expr

Property Formalization

31

Formalization of key DUV Assertions
§  System Verilog Assertion for:

§  Empty and full are never asserted together.

property not_empty_and_full;
@(posedge clk) !(empty && full);
endproperty
mutex : assert property (not_empty_and_full);

Is this a safety or a
liveness property? Why?

This label is useful for debug.

32

Alternative encoding: $onehot0 returns true when
zero or one bit of a multi-bit expression is high.

§  System Verilog Assertion for:
§  Empty and full are never asserted together.

property not_empty_and_full;
@(posedge clk) $onehot0({empty,full});
endproperty
mutex : assert property (not_empty_and_full);

Formalization of key DUV Assertions

This is a safety
property!

33

Beware of property bugs! Know your operators:

§  seq1 |-> seq2, seq2 starts in last cycle of seq1 (overlap)
§  seq1 |=> seq2, seq2 starts in first cycle after seq1

 We need: @(posedge clk) (clear |=> empty);

§  System Verilog Assertion for:
§  After clear the FIFO is empty.

property empty_after_clear;
@(posedge clk) (clear |-> empty);
endproperty
a_empty_after_clear : assert property (empty_after_clear);

Formalization of key DUV Assertions

34

Formalization of key DUV Assertions

§  System Verilog Assertion for:
§  On empty after one write the FIFO is no longer empty.

property not_empty_after_write_on_empty;
@ (posedge clk) (empty && wr |=> !empty);
endproperty
a_not_empty_after_write_on_empty : assert property

(not_empty_after_write_on_empty);

 Assertions can be

monitored during
simulation.

Assertions can also
be used for formal
property checking.

Challenge:
There are many more interesting assertions.

35

Corner Case Properties
§  FIFO empty: When the FIFO is empty and there is a write at the

same time as a read (from empty), then the read should be ignored.
property empty_write_ignore_read;

@(posedge clk)(empty && wr && rd |=>
 data_counter == $past(data_counter)+1);
endproperty
a_cc1 : assert property (empty_write_ignore_read);

§  FIFO full: When the FIFO is full and there is a read at the same time
as a write, then the write (to full) should be ignored.

property full_read_ignore_write
@ (posedge clk) {full && rd && wr |=>
 data_counter == $past(data_counter)-1};
endproperty
a_cc2: assert property (full_read_ignore_write);

36

§  Remember, simulation can only show the presence of
bugs, but never prove their absence!

§  An assertion has never “fired” - what does this mean?
–  Does not necessarily mean that it can’t be violated!

§  Unless simulation is exhaustive...,
 which in practice it never will be.

–  It might not have fired because it was never active.

–  Most assertions have the form of implications.
–  Implications are satisfied when the antecedent is false!

§  These are vacuous passes.
§  We need to know how often the property passes non-

vacuously!

§  How do you know your assertions are correctly expressing
what you intended?

All my assertions pass – what does this mean?

37

§  Measures how often an assertion condition
has been evaluated.
– Many simulators count only non-vacuous

passes.
– Option to add assertion coverage points using:
 assert property ((sel1 || sel2) |=> ack);
 cover property (sel1 || sel2);

– Coverage can also be collected on sub-
expressions:

 cover property (sel1);
 cover property (sel2);

Assertion Coverage

38

Overcoming the Observability Problem
§  If a design property is violated during

simulation, then the DUV fails to operate
according to the original design intent.

BUT:
§  Symptoms of low-level bugs are often not easy to

observe/detect.
§  Activation of a faulty statement may not be enough

for the bug to propagate to an observable output.

Assertion-Based Verification:
§  During simulation, assertions are continuously monitored.
§  The assertion immediately fires when it is violated and in the area of

the design where it occurs.
§  Debugging and fixing an assertion failure is much more efficient

than tracing back the cause of a failure.

39

Costs and benefits of ABV
§  Costs include:

–  Simulation speed
–  Writing the assertions
–  Maintaining the assertions

§  Benefits include:
–  Explicit expression of designer intent and specification requirements

§  Specification errors can be identified earlier
§  Design intent is captured more formally

–  Enables finding more bugs faster
–  Improved localisation of errors for debug
–  Promote measurement of functional coverage
–  Improved qualification of test suite based on assertion coverage
–  Facilitate uptake of formal verification tools
–  Re-use of formal properties throughout design life cycle

Intellectual step of
property capture forces you

to think earlier!

40

§  Assertions are able to detect a significant percentage
of design failures:

§  Assertions should be an integral part of a verification methodology.

Do assertions really work?

[Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.]

41

ABV Methodology

§  Use assertions as a method of documenting the exact
intent of the specification, high-level design, and
implementation

§  Include assertions as part of the design review to ensure
that the intent is correctly understood and implemented

§  Write design assertions when writing the RTL code
–  The benefits of adding assertions at later stage are much lower

§  Assertions should be added whenever new functionality
is added to the design to assert correctness

§  Keep properties and sequences simple
–  Build complex assertions out of simple, short assertions/

sequences

42

Summary

In ABV we have covered:
§  What is an assertion?
§  Use and types of assertions
§  Safety and Liveness properties
§  Introduction to basics of SVA as a property

formalization language
§  Importance of Assertion Coverage
§  Costs vs benefits of using assertions

43

Revision: Use of Assertions
§  Properties describe facts about a design.
§  Properties can be used to write

–  Statements about the expected behaviour of the design and its
interfaces
§  Combinatorial and sequential
§  (Can be used for simulation-based or for formal verification.)

–  Checkers that are active during simulation
§  e.g. protocol checkers

–  Constraints that define legal stimulus for simulation
–  Assumptions made for formal verification
–  Functional coverage points

§  Remember to re-use existing assertions, property libraries or
checks embedded in VIP.

