COMS31700 Design Verification:
Assertion-based

Verification

Kerstin Eder

(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

-% University of Department of & 2
AL BRISTOL COMPUTER SCIENCE

What is an assertion?

An assertion is a statement that a particular property is
required to be true.

— A property is a Boolean-valued expression, e.g. in SystemVerilog.

Assertions can be checked either during simulation or using
a formal property checker.

Assertions have been used in SW design for a long time.
— assert () functionis part of C #include <assert.h>

— Used to detect NULL pointers, out-of-range data, ensure loop
invariants, pre- and post-conditions, etc.

Assertions in C code

1 #include <stdio.h>
2 #include <assert.h>

3

4 1int mysquare(int n) {

5 int s = 0;

6 int 1 = 0;

7 int k = @; /* assertion variable to count the number of times in the loop */
8

9 assert (n >= 0); // Pre-condition to catch invalid input

11 assert (s == k*n && i==k); // Invariant to catch mistaken variable initialisation, e.g. i1 !=0@ or s !=0

13 while (i < n) {

14 S =5+ n;

15 i=1+1;

16 k=k+ 1;

17 assert ((s == k*n) && (i==k)); // Invariant to catch errors in the loop computation
18

19 }

20

21 assert (k == n); // Post-condition to catch a mistaken final state of the loop
23 assert (s == k*n && i==k); // Invariant to catch errors in the loop computation
25 assert (s == n * n); // Check desired post-condition

27 return s;

31 int main(Q) {
32 int n = -4;
33 int square = 0;

35 printf("n = %d\n", n);
36 square = mysquare(n);
37 printf("nA2 = ¥d\n", square);

39 return 0;
40 }

Assertions in C code

1 #include <stdio.h>
2 #include <assert.h>

3

4 1int mysquare(int n) {

5 int s = 0;

6 int 1 = 0;

7 int k = @; /* assertion variable to count the number of times in the loop */
8

9 assert (n >= 0); // Pre-condition to catch invalid input

11 assert (s == k*n && i==k); // Invariant to catch mistaken variable initialisation, e.g. i1 !=0@ or s !=0

13 while (i < n) {

14 S =5+ n;
15 i=1+1;
16 k=k+ 1;
17 assert ((s == k*n) && (i==k)); // Invariant to catch errors in the loop computation
18
19 }
20
21 assert (k == n); // Post-condition to catch a mistaken final state of the loop
22
23 assert (s == k*n && i==k); // Invariant to catch errors in the loop computation
24
25 assert (s == n * n); // Check desired post-condition
26
27 return s;
28 } [cskie@it000908:SLIDES$ gcc mysquare.c —o mysquare
gg [cskie@it000908:SLIDESS ./mysquare
n =4

31 int mainQ) { n*2 = 16
32 int n = -4;) [cskie@it000908:SLIDES$ gcc mysquare.c -0 mysquare
-;2 int square = 0; [cckie@it000908:SLIDESS ./mysquare

1 " _ " - n = _4
35 printf(n = Xd\n", n?, Assertion failed: (n >= @), function mysquare, file mysquare.c, line 9.
36 square = mysquare(n); Abort trap: 6

G WpAD o . . :
gg UL TN U2 L F [cskie@it000908:SLIDESS _
39 return 0;
40 } 4

The Open Verification Language

= Revolution through Foster femxgs « o
& Bening’s OVL for 1 // Accellera Standard V2.8.1 Open Verification Library (OVL).

2 // Accellera Copyright (c) 2005-2014. All rights reserved.

. . 3
Verilog in early 2000 Y
5 // ASSERTION
— Clever way of encoding re- “actoissemron
usable assertion library o 1/ 2-STATE
. . . . 10 // =======
originally in Verilog. © e firedstate dy
. 1 a \{vays‘ posedge cC egin ‘ cain
— 33 assertion checkers - R o
— Language support for: 16] &lsa begin |
Verllog, VHDL, P SL, SV A 1; 1fz\(,{i;ﬁ;sf‘f:?(_)\llz_g(IEgETZSTAT@pr'ession is not F@
19 en
. 20 end
= Assertions have now 21 end

N
N

become Very popular for f_@n fire_2state_1 = (test_expr == 1@
Verification, giving rise to 3008//8[’8

: OVLis an
Assertion-Based Accellera Standard ~ svstews inmanve

Verification (and also |
_ _ http://www.accellera.org/downloads/
Assertion-Based Design). standards/ov

ovl_always

Checks that the value of an expression is TRUE.

Parameters/Generics: coverage_level

fire [OVL_FIRE_WIDTH-1:0]|— Severity_level clock_edge
property_type reset_polarity
—»ltest_expr ~ OVI_always msg gating_type

Class: 1-cycle assertion

clock reset enable
)) A

Syntax

ovl_ always
[# (severity level, property_ type, msg, coverage level, clock_ edge,
reset_polarity, gating type)]
instance_name (clock, reset, enable, test_expr, fire);

Checks that (reg_a < reg_b) is TRUE at each rising edge of clock.

clock I I I L [I
reset] . .

reg_a<reg_b

ALWAYS Error: reg_a <reg_b is not TRUE

ovl next

Checks that the value of an expression is TRUE a specified number of cycles after a start event.

Parameters/Generics:
fire[lOVL_FIRE_WIDTH-1:0] }— severity_level msg
—|{start_event num_cks coverage_level
ovl next check_overlapping clock_edge
— - ltest_expr check_missing_start reset _polarity
property_type gating_type
clock reset enable .
T T T Class: n-cycle assertion
Syntax
ovl next

[# (severity level, num cks, check overlapping, check missing start,
property type, msg, coverage level, clock edge, reset_polarity,
gating type)]

instance_name (clock, reset, enable, start_event, test_expr, fire);

Checks that b is TRUE 4 cycles after a is TRUE.

dock LI L [L L [l I LIl Ll L
I e e T

2 — e T ey

b SRR TN e NSNS S s NSNS '

start_event without test_expr error -

OVL QUICK REFERENCE (www.eda.org/ovl)

Last updated: 28th April 2006

TYPE [NAME PARAVETERS PORTS DESCRIPTION
Sindle-Cvdle |assert alwavs level. propertv tvoe. msa. coverace level) (clk. reset n. test exor) test exor must alwavs hold
TwoCydles |assert_always_on_edge #(severity_level, edae_tvpe, property_tyoe, msq, coverage_level) (clk, reset_n, sampling event, test_expr) test_expr is true immediately followina the specified edae (edae:_tvpe: 0=no-edae, 1=pos, 2=neq, 3=any)
n-Oycles assert_change | #(severity_level, width, num _cks, action_on_new_start, property_type, msg, (clk, reset_n, start_event, test_expr) test_expr must change within num_cks of start_event (action_on_new._start: O=ignore, 1=restart, 2=error)
coverace level)
n-Cycles assert_cycle_sequence #(severity_level, num_cks, necessary_condition, property_type, msg, coverage_level) (clk, reset_n, event_sequence) if the initial sequence holds, the final sequence must also hold (necessary._condition: O=trigger-on-most, 1=trigger-on-first, 2=trigger-on-first-
1nninelined)
TwoCvcles [assert decrement |#(severitv level. width. value. oropertv tvoe. msa. coverace level) (clk. reset n. test exwor) iftest exor chanaes. it must decrement bv the value barameter (modulo 2/ width)
TwoCycles |assert_delta #(severity_level, width, min, max, property_type, meag, coverage:_level) (clk, reset_n, test_expr) if test_expr changes, the delta must be >=min and <=mex
SindleCycle |assert_even_parity | #(severity_level, width, property._tvioe, msa, coverage level) (clk, reset_n, test_expr) test_expr must have an even parity, i.e. an even number of bits asserted
TwoCycles |assert_fifo_index #(severity_level, depth, push_width, pop_width, property_type, msg, coverage:_level, (clk, reset_n, push, pop) FIFO pointers should never overflow or underflow
simultaneous push poo)
n-Cycles assert_frame #(ity_level, min_cks, max_cks, action_on_new_start, property_type, msg, (clk, reset_n, start_event, test_expr) test_expr must not hold before min_cks cydles, but must hold at least once by max_cks cycles (action_on_new_start: O=ignore, 1=restart,
coverace level) 2=error)
nOydles assert_handshake #(severity_level, min_ack_cycle, max_ack_cycle, req_drop, deassert_count, (cl, reset_n, req, ack) req and ack must follow the specified handshaking protocol
max_ack_length, property_type, msg, coverage_level)
Single-Cydle |assert_implication | #(severity_level, property_type, msg, coverage:_level) (clk, reset_n, antecedent_expr, consequent_expr) if antecedent_expr holds then consequent_expr must hold in the same cvie
TwoCydles |assert_increment #(severity_level, width, value, property_tvpe, msa, coverage_level) (clk, reset_n, test_expr) if test_expr chanaes, it must increment by the value parameter (moduio 2/width)
Single-Cycle |assert_never |#(severity_level, property_type, msg, coverage._level) (ck, reset_n, test_expr) test_expr must never holc
Single-Cycle |assert_never_unknown #(severity_level, width, property_tvoe, msg, coverage:_level) (clk, reset_n, qualifier, test_expr) test_expr must never be an unknown value, just boolean O or 1
Combinatorial |assert_never_unknown_async | #(severity_level, width, property_type, msa, coverage: level) (reset_n, test_expr) test_expr must never qo to an unknown value asynchronously, it must remain boolean O or 1
n-Cycles assert_next #(severity_level, num_cks, check_overlapping, check missing_start, property_type, (clk, reset_n, start_event, test_expr) test_expr must hold num _cks cycles after start_event holds
meaq, coverage level)
TwoCycles |assert_no_overfiow | #(severity_level, width, min, max, property_type, meg, coverage: level) (clk, reset_n, test_expr) if test_expr is at max; in the next cycle test_expr must be >min and <=mex
Two Oycles assert_no_transition #(severity_level, width, property_type, msq, coverage_level) (clk, reset_n, test_expr, start_state, next_state) if test_expr=start state, in the next cycle test_expr must not change to next_state
TwoCycles |assert_no_underflow |#(severity_level, width, min, max, property_type, msg, coverage_level) (clk, reset_n, test_expr) if test_expr is at min, in the next cycle test_expr must be >=min and <mex
Single-Cyde |assert_odd_parity #(severity_level, width, property_type, msg, coverage._level) (clk, reset_n, test_expr) test_expr must have an odd parity, i.e. an odd number of bits asserted
Single-Cycle |assert_one cold |#(severity_level, width, inactive, property type, msa, coverace level) (clk; reset n, test expr) test_exor must be one-cold i.e. exactly one bit set low (inactive: O=also-all-zero, 1=also-all-ones, 2=pure-one-cold)
Single-Cycle |assert_one_hot #(severity_level, width, property_type, msg, coverage_level) (clk, reset_n, test_expr) test_expr must be one-hot i.e. exactly one bit set high
Combinatorial |assert_proposition | #(severity_level, property_type, msg, coverage_level) (reset_n, test expr) test_expr must hold asynchronously (not just at a clock edae)
TwoCycles |assert_quiescent_state #(severity_level, width, property_type, msg, coverage:_level) (clk, reset_n, state_expr, check_value, sample_event) state_expr must equal check value on a rising edoe of sanple_event (also checked on rising edge of OV END_OF_SIMULATION)
Single-Cycle |assert_range | #(severity_level, width, min, max, property._type, msg, coverage_level) (clk, reset_n, test_expr) test_expr must be >=min and <=max
n-Cycles assert_time #(severity_level, num _cks, action on new start, property_tvpe, msa, coverace level) |(ck reset n, start_event, test_expr) test_expr must hold for num cks cvcles after start event (action on new start: O=ianore, 1=restart, 2=error)
TwoCycles |assert_transition | #(severity_level, width, property_type, msg, coverage:_level) (clk, reset_n, test_expr, start_state, next_state) if test_expr changes fromstart_state, then it can only change to next_state
n-Cycles assert_unchange #(severity_level, width, num_cks, action_on_new_start, property_type, msg, (clk, reset_n, start_event, test_expr) test_expr must not change within num_cks of start_event (action_on_new_start: O=ignore, 1=restart, 2=error)
coverace level)
n-Cycles assert_width | #(severity_level, min_cks, max_cks, property_type, msg, coverage_level) (clk, reset_n, test_expr) test_expr must hold for between min_cks and max_cks cycles
Event-bounc |assert_win_change #(severity_level, width, property_type, msg, coverage_level) (clk, reset_n, start_event, test_expr, end event) test_expr must change between start_event and end_event
Event-bounc | assert_window #(severity_level, property_tvpe, msg, coverage: level) (clk, reset_n, start_event, test_expr, end_event) test_expr must hold after the start_event and up to (and including) the end_event
Event-bounc |assert_ win_unchange #(severity_level, width, property_tvoe, msa, coverage: level) (clk, reset n, start_event, test_expr, end_event); test_expr must not chanae between start_event and end event
Single-Cydle _|assert zero one hot | #(severity_level, width, property_type, msg, coverage_level) (clk, reset n, test_expr) |test_expr must be one-hot or zero, i.e. at most one bit set high
PARAVETERS USING OVL DESIGN ASSERTIONS INPUT ASSUMPTIONS
severity level +define+OVL_ASSERT _ON Monitors intemal signals & Outputs Restricts environment
"OVL_FATAL +define+OVL._MAX_REPORT_ERROR=1
"OVL_ERROR +define+OVL_INIT_MSG Examples Examples
"OVL_WARNING +define+OVL_INIT_COUNT=<tbench>.ovl_init_count * One hot FSM * One hot inputs
"OVL_INFO * Hit default case items * Range limits e.g. cache sizes
property type Hibext+.v+Mib *FIFO/ Stack * Stability e.g. cache sizes
"OVL_ASSERT -y <OVL_DIR>/std_ovi * Counters (overflow/increment) * No back-to-back regs
"OVL_ASSUMVE +Hnedir+<OVL_DIR>/std_ovi * FSM transitions * Handshaking sequences
"OVL_IGNORE * X checkers (assert_never_unknown) * Bus protocol
msg descriptive string

http://www.accellera.org/downloads/standards/ovl 8

HW Assertions

HW assertions:

= combinatorial (i.e. “zero-time”) conditions that ensure
functional correctness

— must be valid at all times
= “This buffer never overflows.”
» “This register always holds a single-digit value.”
» “The state machine is one hot.”
= “There are no x’s on the bus when the data is valid.”

and

= temporal conditions

— to verify sequential functional behaviour over a period of time
= “The grant signal must be asserted for a single clock cycle.”

* “A request must always be followed by a grant or an abort within 5
clock cycles.”

— Temporal assertion languages facilitate specification of temporal
properties.
= System Verilog Assertions (SVA)
= PSL

Who writes the assertions?

System
Architects

Standards Designers

DUV

IP Verification
Providers Engineers

10

Types of Assertions

Types of Assertions: Implementation Assertions

= Also called “design” assertions.
— Specified by the designer.

= Encode designer's assumptions.

— Interface assertions:
= Catch different interpretations between individual designers.

— Conditions of design misuse or design faults:

» detect buffer over/under flow
» detect buffer read & write at the same time when only one is
allowed

* Implementation assertions can detect
discrepancies between design assumptions and
implementation.

= But implementation assertions won't detect
discrepancies between functional intent and

design! (Remember: Verification Independence!)
12

Types of Assertions: Specification Assertions

= Also called “intent” assertions
— Often high-level properties.

= Specified by architects, verification engineers, IP
providers, standards.

= Encode expectations of the design based on
understanding of functional intent.

= Provide a “functional error detection” mechanism.

= Supplement error detection performed by self-
checking testbenches.
— Instead of using (implementing) a monitor and checker,

In many cases writing a block-level assertion can be
much simpler.

13

Safety Properties

= Safety: Something bad does not happen
— The FIFO does not overflow.

— The system does not allow more than one
process to use a shared device simultaneously.

— Requests are answered within 5 cycles.

= More formally: A safety property is a property for

which any path violating the property has a finite prefix
such that every extension of the prefix violates the property.

Safety properties can be falsified by a finite

simulation run.
14

Liveness Properties

= Liveness: Something good eventually happens

— The system eventually terminates.
— Every request is eventually acknowledged.
= More formally: A liveness property is a property for which

any finite path can be extended to a path satisfying the
property. [Foster etal.: Assertion-Based Design. 2" Edition, Kluwer, 2010.]

In theory, liveness properties can only be falsified
by an infinite simulation run.

— Practically, we often assume that the “graceful end-of-

test” represents infinite time.
= |f the good thing did not happen after this period, we assume
that it will never happen, and thus the property is falsified.

15

Example FIFO DUV

Example DUV Specification - Inputs

data_in [7:0]
wr
rd

clear
clk

= |[nputs:
— wr indicates valid data is driven on the data_in bus
— data_in is the data to be pushed into the DUV
— rd pops the next data item from the DUV in the next cycle
— clear resets the DUV

17

Example DUV Specification - Outputs

data_in [7:0] data_out_valid
Wr
data out [7:0
rd L
clear empty X
clk full >
= Outputs:

— data_out_valid indicates that valid data is driven on the
data_out bus

— data_out is the data item requested from the DUV
— empty indicates that the DUV is empty

— full indicates that the DUV is full
18

DUV Specification

= High-Level functional specification of DUV
— The design is a FIFO.
— Reading and writing can be done in the same cycle.

— Data becomes valid for reading one cycle after it is
written.

— No data is returned for a read when the DUV is empty.

— Clearing takes one cycle.

— During clearing read and write are disabled.
— Inputs arriving during a clear are ignored.

— The FIFO is 8 entries deep.

19

ldentifying Properties for the FIFO block

An invariant

. roperty.
Black box view: property

— Empty and full are never asserted together.
— After clear the FIFO is empty.
— After writing 8 data items the FIFO is full.

— Data items are moving through the FIFO unchanged in
terms of data content and in terms of data order.

— No data is duplicated.
— No data is lost.
— data_out_valid only for valid data, i.e. no x’s in data.

20

ldentifying Properties for the FIFO block

White box view:

— The value range of the read and write pointers is
between 0 and 7.

— The data_counter ranges from 0 to 8.

— The data in the FIFO is not changed during a clear.
— For each valid read the read pointer is incremented.
— For each valid write the write pointer is incremented.
— Data is written only to the slot indicated by nxt_wr.
— Data is read only from the slot indicated by nxt_rd.

— When reading and writing in the same cycle the
data_counter remains unchanged.

» What about a RW from an empty/full FIFO?

21

Property Formalization

= Property Formalization Languages
— Most commonly used languages:

= SVA and
= PSL [IEEE - 1850]

— Assertions can be combinatorial Temp(_)l’al_
property mutex; expression in
{ ! (empty && full) } Booleqn form of an
end property expression implication

— or temporal

property req followed by ack;
@ (posedge clk){ Srose (req) |=> ##[0:1] ack }
end property

pre-condition main condition

(antecedent) (consequent) !,

How Assertions work during Simulation

= Temporal properties can be in one of 4
states during simulation:

— inactive (no match), active, pass or falil

property req followed by ack;
@ (posedge clk){ Srose (req) |=> ##[0:1] ack }

end property
P req ack: assert property req followed by ack;

clk |
req |
ack
v v v v v v v v
active pass active pass active active fail fail

23

Introduction to Writing Properties using SVA

To formalize basic properties using SVA we need to
learn about:

= [mplications
= Sequences
— Cycle delay and repetition

" Srose, $fell, Spast, $stable

24

Implications

= Properties typically take the form of an implication.

= SVA has two implication operators:

true

. _ o non-overlapping
| => represents logical implication implication

- A|=>B is equivalentto (not A) or B,
where B is sampled one cycle after A.

req gnt: assert property (req |=> gnt);

clk

req

gnt

| v | | | v v
fail pass fail

caont vy XSV OV Vv XE

25

Implications

= SVA has another implication operator:

= | —> represents logical implication
- A|->B isequivalentto (not A) or B,
where B is sampled in the same cycle as 2.

req gnt vl: assert property (reg |=> gnt);

req gnt v2: assert property (req |[-> ##1 gnt);

The overlapping implication Delay operator ##N
operator |-> specifies behaviour in delays by N cycles,
the same clock cycle as the one in where N is a positive

which the LHS is evaluated. integer including O.

Both properties above are specifying the same functional behaviour.

26

Sequences

Useful to specify complex temporal relationships.
Constructing sequences:

— A Boolean expression is the simplest sequence.

— ## concatenates two sequences.

— ##N cycle delay operator - advances time by N clock cycles.
" a ##3 Db bistrue 3 clock cycles after a

- ## [N:M] specifies a range.
" a ##[0:3] b bistrue 0,1,2 or 3 clock cycles after a

— [*N] consecutive repetition operator
— A sequence or expression that is consecutively repeated with one
cycle delay between each repetition.
" a [*2] exactly two repetitions of a in consecutive clock cycles

- [*N:M] consecutive repetition with a specified range
" a[*1:3] coversa,a ##l aora ##l1 a ##1 a

27

Useful SystemVerilog Functions for
Property Specification

"= Srose and $fell

— Compares value of its operand in the current
cycle with the value this operand had in the
previous cycle.

" Srose

— Detects a transitionto 1 (true)
= Sfell

— Detects a transitionto 0 (false)
= Example:

assert property (Srose(req) |=> Srose(gnt));

28

Useful SystemVerilog Functions for
Property Specification

" Spast (expr)

— Returns the value of expr in the previous cycle.
= Example:

assert property (gnt |-> Spast(req)):

" Spast (expr, N)
— Returns the value of expr N cycles ago.

" Sstable (expr)

— Returns true when the previous value of expr is the
same as the current value of expr.

— Represents: Spast (expr) == expr

29

Property Formalization

Formalization of key DUV Assertions

= System Verilog Assertion for:
= Empty and full are never asserted together.

Is this a safety or a
liveness property? Why?

property not empty and full;

@ (posedge clk) ! (empty && full);

endproperty

mutex : assert property (not empty and full);

This label is useful for debug.
31

Formalization of key DUV Assertions

= System Verilog Assertion for:
= Empty and full are never asserted together.

This is a safety
property!

property not empty and full;

@ (posedge clk) S$onehotO ({empty, full}) ;
endproperty

mutex : assert property (not empty and full);

Alternative encoding: Sonehot0 returns true when
zero or one bit of a multi-bit expression is high.

32

Formalization of key DUV Assertions

= System Verilog Assertion for:
= After clear the FIFO is empty.

property empty after clear;
@ (posedge clk) (clear |-> empty);
endproperty

a empty after clear : assert property (empty after clear);

Beware of property bugs! Know your operators:

" seqgl |-> seqg2, seqg?2 starts in last cycle of seqgl (overlap)
" seqgl |=> seqg2, seq2 starts in first cycle after seqgl

We need: @ (posedge clk) (clear |=> empty):;

33

Formalization of key DUV Assertions

= System Verilog Assertion for:
= On empty after one write the FIFO is no longer empty.

property not empty after write on empty;
@ (posedge clk) (empty && wr |=> 'empty)
endproperty

a not empty after write on empty : assert property
(not _empty after write on empty);

Assertions can be Assertions can also

monitored during be used for formal

simulation. property checking.
Challenge:

There are many more interesting assertions.

34

Corner Case Properties

FIFO empty: When the FIFO is empty and there is a write at the
same time as a read (from empty), then the read should be ignored.
property empty write ignore read;
@ (posedge clk) (empty && wr && rd |=>
data_counter == $past(data_counter)+1);
endproperty

a ccl : assert property (empty write ignore read);

FIFO full: When the FIFO is full and there is a read at the same time
as a write, then the write (to full) should be ignored.
property full read ignore write
@ (posedge clk) {full && rd && wr |=>
data counter == $past(data counter)-1};
endproperty
a cc2: assert property (full read ignore write);

35

All my assertions pass — what does this mean?

= Remember, simulation can only show the presence of
bugs, but never prove their absence!

= An assertion has never “fired” - what does this mean?

— Does not necessarily mean that it can’t be violated!
= Unless simulation is exhaustive...,
which in practice it never will be.
— It might not have fired because it was never active.

— Most assertions have the form of implications.
— Implications are satisfied when the antecedent is false!
* These are vacuous passes.

= We need to know how often the property passes non-
vacuously!

= How do you know your assertions are correctly expressing

what you intended?
36

Assertion Coverage

= Measures how often an assertion condition
has been evaluated.

— Many simulators count only non-vacuous

passes.
— Option to add assertion coverage points using:
assert property ((sell || sel2) |=> ack);
cover property (sell || sel2);

— Coverage can also be collected on sub-
expressions:

cover property (sell);
cover property (sel2);

37

Overcoming the Observability Problem

= |f a design property is violated during
simulation, then the DUV fails to operate
according to the original design intent.

BUT:

= Symptoms of low-level bugs are often not easy to
observe/detect.

= Activation of a faulty statement may not be enough
for the bug to propagate to an observable output.

Assertion-Based Verification:
= During simulation, assertions are continuously monitored.

= The assertion immediately fires when it is violated and in the area of
the design where it occurs.

= Debugging and fixing an assertion failure is much more efficient
than tracing back the cause of a failure.

38

Costs and benefits of ABV

COS’fS mc!ude: Intellectual step of
— Simulation speed property capture forces you
— Writing the assertions to think earlier!

— Maintaining the assertions

Benefits include:

— Explicit expression of designer intent and specification requirements
» Specification errors can be identified earlier
= Design intent is captured more formally

— Enables finding more bugs faster

— Improved localisation of errors for debug

— Promote measurement of functional coverage

— Improved qualification of test suite based on assertion coverage

— Facilitate uptake of formal verification tools

— Re-use of formal properties throughout design life cycle
39

Do assertions really work?

= Assertions are able to detect a significant percentage

of design failures:

[Foster etal.: Assertion-Based Design. 2" Edition, Kluwer, 2010.]

34% of all bugs were found by assertions on DEC Alpha
21164 project [Kantrowitz and Noack 1996

17% of all bugs were found by assertions on Cyrix M3(p1)
project [Krolnik 1998]

25% of all bugs were found by assertions on DEC Alpha
21264 project - The DEC 21264 Microprocessor [Taylor et
al. 1998]

25% of all bugs were found by assertions on Cyrix M3(p2)
project [Krolnik 1999]

85% of all bugs were found using OVL assertions on HP
[Foster and Coelho 2001]

Assertions should be an integral part of a verification methodology.

40

ABV Methodology

Use assertions as a method of documenting the exact
intent of the specification, high-level design, and
Implementation

Include assertions as part of the design review to ensure
that the intent is correctly understood and implemented

Write design assertions when writing the RTL code
— The benefits of adding assertions at later stage are much lower

Assertions should be added whenever new functionality
is added to the design to assert correctness

Keep properties and sequences simple

— Build complex assertions out of simple, short assertions/
sequences

41

Summary

In ABV we have covered:

= What is an assertion?

= Use and types of assertions

= Safety and Liveness properties

= |ntroduction to basics of SVA as a property
formalization language

= |[mportance of Assertion Coverage
= Costs vs benefits of using assertions

42

Revision: Use of Assertions

= Properties describe facts about a design.
= Properties can be used to write

— Statements about the expected behaviour of the design and its
interfaces

= Combinatorial and sequential
= (Can be used for simulation-based or for formal verification.)

— Checkers that are active during simulation
= e.g. protocol checkers

— Constraints that define legal stimulus for simulation
— Assumptions made for formal verification
— Functional coverage points

Remember to re-use existing assertions, property libraries or
checks embedded in VIP.

43

