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What is an assertion? 
§  An assertion is a statement that a particular property is 

required to be true.  
–  A property is a Boolean-valued expression, e.g. in SystemVerilog.  

§  Assertions can be checked either during simulation or using 
a formal property checker. 

§  Assertions have been used in SW design for a long time. 
–  assert() function is part of C #include <assert.h> 
–  Used to detect NULL pointers, out-of-range data, ensure loop 

invariants, pre- and post-conditions, etc. 
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Assertions in C code 
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Assertions in C code 
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The Open Verification Language 
§  Revolution through Foster 

& Bening’s OVL for 
Verilog in early 2000 
–  Clever way of encoding re-

usable assertion library 
originally in Verilog. J 

–  33 assertion checkers 
–  Language support for: 

Verilog, VHDL, PSL, SVA 

§  Assertions have now 
become very popular for 
Verification, giving rise to 
Assertion-Based 
Verification (and also 
Assertion-Based Design). 

OVL is an  
Accellera Standard  
http://www.accellera.org/downloads/
standards/ovl 
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TYPE NAME PARAMETERS PORTS DESCRIPTION
Single-Cycle assert_always #(severity_level, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust alwayshold
TwoCycles assert_always_on_edge #(severity_level,edge_type, property_type,msg, coverage_level) (clk, reset_n,sampling_event, test_expr) test_expr is true immediately followingthespecifiededge(edge_type: 0=no-edge, 1=pos, 2=neg, 3=any)
n-Cycles assert_change #(severity_level,width,num_cks,action_on_new_start, property_type,msg,

coverage_level)
(clk, reset_n,start_event, test_expr) test_exprmust changewithinnum_cksof start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)

n-Cycles assert_cycle_sequence #(severity_level,num_cks,necessary_condition, property_type,msg, coverage_level) (clk, reset_n,event_sequence) if the initial sequenceholds, the final sequencemust alsohold(necessary_condition: 0=trigger-on-most, 1=trigger-on-first, 2=trigger-on-first-
unpipelined)

TwoCycles assert_decrement #(severity_level,width,value, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr changes, itmust decrement by thevalueparameter (modulo 2̂ width)
TwoCycles assert_delta #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr changes, thedeltamust be>=minand<=max
SingleCycle assert_even_parity #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust haveanevenparity, i.e. anevennumber of bitsasserted
TwoCycles assert_fifo_index #(severity_level,depth,push_width,pop_width, property_type,msg, coverage_level,

simultaneous_push_pop)
(clk, reset_n,push,pop) FIFOpointersshouldnever overflowor underflow

n-Cycles assert_frame #(severity_level,min_cks,max_cks,action_on_new_start, property_type,msg,
coverage_level)

(clk, reset_n,start_event, test_expr) test_exprmust not holdbeforemin_ckscycles, butmust holdat least oncebymax_ckscycles (action_on_new_start: 0=ignore, 1=restart,
2=error)

n-Cycles assert_handshake #(severity_level,min_ack_cycle,max_ack_cycle, req_drop,deassert_count,
max_ack_length, property_type,msg, coverage_level)

(clk, reset_n, req,ack) reqandackmust followthespecifiedhandshakingprotocol

Single-Cycle assert_implication #(severity_level, property_type,msg, coverage_level) (clk, reset_n,antecedent_expr,consequent_expr) if antecedent_expr holds thenconsequent_exprmust hold in thesamecyle
TwoCycles assert_increment #(severity_level,width,value, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr changes, itmust increment by thevalueparameter (modulo 2̂ width)
Single-Cycle assert_never #(severity_level, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust never hold
Single-Cycle assert_never_unknown #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,qualifier, test_expr) test_exprmust never beanunknownvalue, just boolean0or 1
Combinatorial assert_never_unknown_async #(severity_level,width, property_type,msg, coverage_level) (reset_n, test_expr) test_exprmust never gotoanunknownvalueasynchronously, itmust remainboolean0or 1
n-Cycles assert_next #(severity_level,num_cks,check_overlapping,check_missing_start, property_type,

msg, coverage_level)
(clk, reset_n,start_event, test_expr) test_exprmust holdnum_ckscyclesafter start_event holds

TwoCycles assert_no_overflow #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr isatmax, in thenext cycle test_exprmust be>minand<=max
TwoCycles assert_no_transition #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr,start_state,next_state) if test_expr==start_state, in thenext cycle test_exprmust not changetonext_state
TwoCycles assert_no_underflow #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) if test_expr isatmin, in thenext cycle test_exprmust be>=minand<max
Single-Cycle assert_odd_parity #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust haveanoddparity, i.e. anoddnumber of bitsasserted
Single-Cycle assert_one_cold #(severity_level,width, inactive, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust beone-cold i.e. exactlyonebit set low(inactive: 0=also-all-zero, 1=also-all-ones, 2=pure-one-cold)
Single-Cycle assert_one_hot #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust beone-hot i.e. exactlyonebit set high
Combinatorial assert_proposition #(severity_level, property_type,msg, coverage_level) (reset_n, test_expr) test_exprmust holdasynchronously (not just at aclockedge)
TwoCycles assert_quiescent_state #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,state_expr,check_value,sample_event) state_exprmust equal check_valueonarisingedgeof sample_event (alsocheckedonrisingedgeof `OVL_END_OF_SIMULATION)
Single-Cycle assert_range #(severity_level,width,min,max, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust be>=minand<=max
n-Cycles assert_time #(severity_level,num_cks,action_on_new_start, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr) test_exprmust hold for num_ckscyclesafter start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)
TwoCycles assert_transition #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr,start_state,next_state) if test_expr changes fromstart_state, then it canonlychangetonext_state

n-Cycles assert_unchange #(severity_level,width,num_cks,action_on_new_start, property_type,msg,
coverage_level)

(clk, reset_n,start_event, test_expr) test_exprmust not changewithinnum_cksof start_event (action_on_new_start: 0=ignore, 1=restart, 2=error)

n-Cycles assert_width #(severity_level,min_cks,max_cks, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust hold for betweenmin_cksandmax_ckscycles

Event-bound assert_win_change #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr, end_event) test_exprmust changebetweenstart_event andend_event
Event-bound assert_window #(severity_level, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr,end_event) test_exprmust holdafter thestart_event andupto(and including) theend_event
Event-bound assert_win_unchange #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n,start_event, test_expr,end_event); test_exprmust not changebetweenstart_event andend_event
Single-Cycle assert_zero_one_hot #(severity_level,width, property_type,msg, coverage_level) (clk, reset_n, test_expr) test_exprmust beone-hot or zero, i.e. atmost onebit set high

PARAMETERS USINGOVL DESIGNASSERTIONS INPUTASSUMPTIONS
severity_level +define+OVL_ASSERT_ON Monitors internal signals&Outputs Restrictsenvironment
`OVL_FATAL +define+OVL_MAX_REPORT_ERROR=1
`OVL_ERROR +define+OVL_INIT_MSG Examples Examples
`OVL_WARNING +define+OVL_INIT_COUNT=<tbench>.ovl_init_count *Onehot FSM *Onehot inputs
`OVL_INFO *Hit default case items *Range limitse.g. cachesizes
property_type +libext+.v+.vlib *FIFO/ Stack *Stabilitye.g. cachesizes
`OVL_ASSERT -y<OVL_DIR>/std_ovl *Counters (overflow/increment) *Noback-to-back reqs
`OVL_ASSUME +incdir+<OVL_DIR>/std_ovl * FSMtransitions *Handshakingsequences
`OVL_IGNORE *Xcheckers (assert_never_unknown) *Busprotocol
msg descriptivestring

OVL QUICK REFERENCE (www.eda.org/ovl) Last updated: 28th April 2006

8 http://www.accellera.org/downloads/standards/ovl 
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HW Assertions 
HW assertions: 
§  combinatorial (i.e. “zero-time”) conditions that ensure 

functional correctness 
–  must be valid at all times 

§  “This buffer never overflows.” 
§  “This register always holds a single-digit value.” 
§  “The state machine is one hot.” 
§  “There are no x’s on the bus when the data is valid.” 

and 
§  temporal conditions  

–  to verify sequential functional behaviour over a period of time 
§  “The grant signal must be asserted for a single clock cycle.” 
§  “A request must always be followed by a grant or an abort within 5 

clock cycles.” 
–  Temporal assertion languages facilitate specification of temporal 

properties.  
§  System Verilog Assertions (SVA) 
§  PSL 
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Who writes the assertions? 

DUV 

System 
Architects 

Designers 

Verification 
Engineers 

IP 
Providers 

Standards 



Types of Assertions 
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Types of Assertions: Implementation Assertions 

§  Also called “design” assertions. 
–  Specified by the designer. 

§  Encode designer’s assumptions. 
–  Interface assertions: 

§  Catch different interpretations between individual designers. 
–  Conditions of design misuse or design faults: 

§  detect buffer over/under flow 
§  detect buffer read & write at the same time when only one is 

allowed 
§  Implementation assertions can detect 

discrepancies between design assumptions and 
implementation. 

§  But implementation assertions won’t detect 
discrepancies between functional intent and 
design!    (Remember: Verification Independence!) 
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Types of Assertions: Specification Assertions 

§  Also called “intent” assertions 
–  Often high-level properties. 

§  Specified by architects, verification engineers, IP 
providers, standards. 

§  Encode expectations of the design based on 
understanding of functional intent. 

§  Provide a “functional error detection” mechanism. 
§  Supplement error detection performed by self-

checking testbenches. 
–  Instead of using (implementing) a monitor and checker, 

in many cases writing a block-level assertion can be 
much simpler. 
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Safety Properties 
§  Safety: Something bad does not happen 

– The FIFO does not overflow. 
– The system does not allow more than one 

process to use a shared device simultaneously. 
– Requests are answered within 5 cycles. 

§  More formally: A safety property is a property for 
which any path violating the property has a finite prefix 
such that every extension of the prefix violates the property. 

        [Accellera PSL-1.1 2004] 
 Safety properties can be falsified by a finite 
simulation run. 
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Liveness Properties 
§  Liveness: Something good eventually happens 

–  The system eventually terminates. 
–  Every request is eventually acknowledged. 

§  More formally: A liveness property is a property for which 
any finite path can be extended to a path satisfying the 
property. [Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.] 

 In theory, liveness properties can only be falsified 
by an infinite simulation run.  
–  Practically, we often assume that the “graceful end-of-

test” represents infinite time. 
§  If the good thing did not happen after this period, we assume 

that it will never happen, and thus the property is falsified. 



Example FIFO DUV 
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Example DUV Specification - Inputs 

§  Inputs:  
–  wr indicates valid data is driven on the data_in bus 
–  data_in is the data to be pushed into the DUV 
–  rd pops the next data item from the DUV in the next cycle 
–  clear resets the DUV  

DUV 

clk 
clear 

wr 

data_in [7:0] 

rd 

data_out [7:0] 

empty 

full 

data_out_valid 



18 

Example DUV Specification - Outputs 

§  Outputs:  
–  data_out_valid indicates that valid data is driven on the 

data_out bus 
–  data_out is the data item requested from the DUV 
–  empty indicates that the DUV is empty 
–  full indicates that the DUV is full 

DUV 

clk 
clear 

wr 

data_in [7:0] 

rd 
data_out [7:0] 

empty 

full 

data_out_valid 
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DUV Specification 

§  High-Level functional specification of DUV 
–  The design is a FIFO. 
–  Reading and writing can be done in the same cycle. 
–  Data becomes valid for reading one cycle after it is 

written. 
–  No data is returned for a read when the DUV is empty. 
–  Clearing takes one cycle. 
–  During clearing read and write are disabled. 
–  Inputs arriving during a clear are ignored. 
–  The FIFO is 8 entries deep. 
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Identifying Properties for the FIFO block 

Black box view: 
–  Empty and full are never asserted together.  
–  After clear the FIFO is empty.  
–  After writing 8 data items the FIFO is full.  
–  Data items are moving through the FIFO unchanged in 

terms of data content and in terms of data order.  
–  No data is duplicated.  
–  No data is lost.  
–  data_out_valid only for valid data, i.e. no x’s in data.  

An invariant 
property. 
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Identifying Properties for the FIFO block 

White box view: 
–  The value range of the read and write pointers is 

between 0 and 7. 
–  The data_counter ranges from 0 to 8. 
–  The data in the FIFO is not changed during a clear. 
–  For each valid read the read pointer is incremented. 
–  For each valid write the write pointer is incremented. 
–  Data is written only to the slot indicated by nxt_wr. 
–  Data is read only from the slot indicated by nxt_rd. 
–  When reading and writing in the same cycle the 

data_counter remains unchanged.  
§  What about a RW from an empty/full FIFO? 
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Property Formalization  
§  Property Formalization Languages 

– Most commonly used languages:  
§ SVA and  
§  PSL [IEEE – 1850] 

– Assertions can be combinatorial 
property mutex; 

 { !(empty && full) } 
end property 

– or temporal 
property req_followed_by_ack; 

 @(posedge clk){ $rose (req) |=> ##[0:1] ack } 
end property 

 

Boolean 
expression 

Temporal 
expression in 

form of an 
implication 

main condition 
(consequent) 

pre-condition 
(antecedent) 
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§  Temporal properties can be in one of 4 
states during simulation: 
–  inactive (no match), active, pass or fail 
 

property req_followed_by_ack; 
 @(posedge clk){ $rose (req) |=> ##[0:1] ack } 

end property 

p_req_ack: assert property req_followed_by_ack; 

How Assertions work during Simulation 

clk 
req 
ack 

active active active pass pass active fail fail 
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Introduction to Writing Properties using SVA  

§  Implications 
§  Sequences 

– Cycle delay and repetition 
§  $rose, $fell, $past, $stable 
 
 

To formalize basic properties using SVA we need to 
learn about: 
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Implications 
§  Properties typically take the form of an implication. 
§  SVA has two implication operators: 
§  |=> represents logical implication 

–  A|=>B is equivalent to (not A) or B,  
     where B is sampled one cycle after A. 

req_gnt: assert property ( req |=> gnt ); 
 
 clk 
req 
gnt 

pass fail fail 
req_gnt 
true 

non-overlapping 
implication 

✗ ✗ 
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Implications 
§  SVA has another implication operator: 
§  |-> represents logical implication 

–  A|->B is equivalent to (not A) or B,  
    where B is sampled in the same cycle as A. 

 

req_gnt_v1: assert property ( req |=> gnt ); 

 

req_gnt_v2: assert property ( req |-> ##1 gnt ); 
 
 
 
 

Both properties above are specifying the same functional behaviour. 

The overlapping implication 
operator |-> specifies behaviour in 
the same clock cycle as the one in 

which the LHS is evaluated. 

Delay operator ##N 
delays by N cycles, 

where N is a positive 
integer including 0. 
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Sequences 
§  Useful to specify complex temporal relationships. 
§  Constructing sequences: 

–  A Boolean expression is the simplest sequence. 
–  ## concatenates two sequences. 
–  ##N cycle delay operator - advances time by N clock cycles. 

§  a ##3 b b is true 3 clock cycles after a 

–  ##[N:M] specifies a range. 
§  a ##[0:3] b b is true 0,1,2 or 3 clock cycles after a 

–  [*N] consecutive repetition operator 
–  A sequence or expression that is consecutively repeated with one 

cycle delay between each repetition. 
§  a [*2] exactly two repetitions of a in consecutive clock cycles 

–  [*N:M] consecutive repetition with a specified range 
§  a[*1:3] covers a, a ##1 a or a ##1 a  ##1 a 



28 

Useful SystemVerilog Functions for 
Property Specification 

§  $rose and $fell 
– Compares value of its operand in the current 

cycle with the value this operand had in the 
previous cycle. 

§  $rose 
– Detects a transition to 1 (true) 

§  $fell 
– Detects a transition to 0 (false) 

§  Example: 

 assert property ( $rose(req) |=> $rose(gnt) ); 
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Useful SystemVerilog Functions for 
Property Specification 

§  $past(expr) 
–  Returns the value of expr in the previous cycle. 
§  Example: 

  assert property ( gnt |-> $past(req) ); 

§  $past(expr, N) 
–  Returns the value of expr N cycles ago. 

§  $stable(expr) 

–  Returns true when the previous value of expr is the 
same as the current value of expr. 

–  Represents: $past(expr) == expr 



Property Formalization 
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Formalization of key DUV Assertions 
§  System Verilog Assertion for: 

§  Empty and full are never asserted together. 
 
 
 
 
 

property not_empty_and_full; 
@(posedge clk) !(empty && full); 
endproperty 
mutex : assert property (not_empty_and_full); 

 
  

Is this a safety or a 
liveness property? Why? 

This label is useful for debug. 
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Alternative encoding: $onehot0 returns true when 
zero or one bit of a multi-bit expression is high. 

§  System Verilog Assertion for: 
§  Empty and full are never asserted together. 

 
 
 
 

property not_empty_and_full; 
@(posedge clk) $onehot0({empty,full}); 
endproperty 
mutex : assert property (not_empty_and_full); 

Formalization of key DUV Assertions 

This is a safety 
property! 
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Beware of property bugs! Know your operators: 
 

§   seq1 |-> seq2, seq2 starts in last cycle of seq1 (overlap)  
§   seq1 |=> seq2, seq2 starts in first cycle after seq1 
 

 We need: @(posedge clk) (clear |=> empty); 

§  System Verilog Assertion for: 
§  After clear the FIFO is empty. 

 
property empty_after_clear; 
@(posedge clk) (clear |-> empty); 
endproperty  
a_empty_after_clear : assert property (empty_after_clear); 

Formalization of key DUV Assertions 
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Formalization of key DUV Assertions 

§  System Verilog Assertion for: 
§  On empty after one write the FIFO is no longer empty. 

property not_empty_after_write_on_empty; 
@ (posedge clk) (empty && wr |=> !empty); 
endproperty 
a_not_empty_after_write_on_empty : assert property 

(not_empty_after_write_on_empty); 

 
  Assertions can be 

monitored during 
simulation. 

Assertions can also 
be used for formal 
property checking. 

Challenge:  
There are many more interesting assertions. 
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Corner Case Properties   
§  FIFO empty: When the FIFO is empty and there is a write at the 

same time as a read (from empty), then the read should be ignored. 
property empty_write_ignore_read; 

@(posedge clk)(empty && wr && rd |=>  
                    data_counter == $past(data_counter)+1); 
endproperty 
a_cc1 : assert property (empty_write_ignore_read); 

§  FIFO full: When the FIFO is full and there is a read at the same time 
as a write, then the write (to full) should be ignored. 

property full_read_ignore_write 
@ (posedge clk) {full && rd && wr |=>  
                     data_counter == $past(data_counter)-1}; 
endproperty 
a_cc2: assert property (full_read_ignore_write); 
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§  Remember, simulation can only show the presence of 
bugs, but never prove their absence! 

§  An assertion has never “fired” - what does this mean? 
–  Does not necessarily mean that it can’t be violated! 

§  Unless simulation is exhaustive...,  
 which in practice it never will be. 

–  It might not have fired because it was never active. 
  

–  Most assertions have the form of implications. 
–  Implications are satisfied when the antecedent is false! 

§  These are vacuous passes. 
§  We need to know how often the property passes non-

vacuously! 

§  How do you know your assertions are correctly expressing 
what you intended? 

All my assertions pass – what does this mean? 
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§  Measures how often an assertion condition 
has been evaluated. 
– Many simulators count only non-vacuous 

passes. 
– Option to add assertion coverage points using: 
 assert property ( (sel1 || sel2) |=> ack ); 
 cover property  ( sel1 || sel2 ); 

 
 

– Coverage can also be collected on sub-
expressions: 

 
 cover property ( sel1 ); 
 cover property ( sel2 ); 

Assertion Coverage 
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Overcoming the Observability Problem 
§  If a design property is violated during 

simulation, then the DUV fails to operate 
according to the original design intent. 

BUT: 
§  Symptoms of low-level bugs are often not easy to 

observe/detect. 
§  Activation of a faulty statement may not be enough 

for the bug to propagate to an observable output. 

Assertion-Based Verification:  
§  During simulation, assertions are continuously monitored. 
§  The assertion immediately fires when it is violated and in the area of 

the design where it occurs. 
§  Debugging and fixing an assertion failure is much more efficient 

than tracing back the cause of a failure. 
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Costs and benefits of ABV 
§  Costs include: 

–  Simulation speed 
–  Writing the assertions 
–  Maintaining the assertions 

§  Benefits include: 
–  Explicit expression of designer intent and specification requirements 

§  Specification errors can be identified earlier 
§  Design intent is captured more formally 

–  Enables finding more bugs faster 
–  Improved localisation of errors for debug 
–  Promote measurement of functional coverage 
–  Improved qualification of test suite based on assertion coverage 
–  Facilitate uptake of formal verification tools 
–  Re-use of formal properties throughout design life cycle 

Intellectual step of 
property capture forces you 

to think earlier! 
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§  Assertions are able to detect a significant  percentage 
of design failures: 

§  Assertions should be an integral part of a verification methodology.  

Do assertions really work?  

[Foster etal.: Assertion-Based Design. 2nd Edition, Kluwer, 2010.] 
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ABV Methodology 

§  Use assertions as a method of documenting the exact 
intent of the specification, high-level design, and 
implementation 

§  Include assertions as part of the design review to ensure 
that the intent is correctly understood and implemented 

§  Write design assertions when writing the RTL code 
–  The benefits of adding assertions at later stage are much lower 

§  Assertions should be added whenever new functionality 
is added to the design to assert correctness 

§  Keep properties and sequences simple 
–  Build complex assertions out of simple, short assertions/

sequences 
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Summary 

In ABV we have covered: 
§  What is an assertion? 
§  Use and types of assertions 
§  Safety and Liveness properties 
§  Introduction to basics of SVA as a property 

formalization language 
§  Importance of Assertion Coverage 
§  Costs vs benefits of using assertions 
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Revision: Use of Assertions 
§  Properties describe facts about a design.  
§  Properties can be used to write 

–  Statements about the expected  behaviour of the design and its 
interfaces 
§  Combinatorial and sequential 
§  (Can be used for simulation-based or for formal verification.) 

–  Checkers that are active during simulation 
§  e.g. protocol checkers 

–  Constraints that define legal stimulus for simulation 
–  Assumptions made for formal verification 
–  Functional coverage points 

§  Remember to re-use existing assertions, property libraries or 
checks embedded in VIP. 


