
COMS30026 Design Verification

Checking

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

Checking: Outline

§ Motivation
§ Issues in checking

– When to check
– What to check

§ Checking technologies
– Reference models
– Scoreboards
– Rule-based checking

https://clipartix.com/detective-clipart/

3

Checking: Outline

§ Motivation
§ Issues in checking

– When to check
– What to check

§ Checking technologies
– Reference models
– Scoreboards
– Rule-based checking
– Assertion-based verification (ABV) (later)

https://clipartix.com/detective-clipart/

4

The Yin & Yang of Verification

– We cannot find bugs
without creating the
failing conditions.

– We cannot find
bugs without
detecting the
incorrect behavior.

Driver

Checker

§ Driving and checking are the yin and
yang of verification

The Importance of Driving and Checking

§ Drivers activate the bug.
§ The observable effects of the bug then

need to propagate to a checker.
§ A checker needs to be in place to detect

the incorrect behaviour.

All three are needed to find bugs!

Activation Propagation Detection

6

Ideal Checking
§ In theory, we wish to detect deviations from the

expected behavior as soon as these happen
and, ideally, where they happen
– Easy to debug: the checker points to the bug
– No need to worry about “disappearing errors”

§ In reality, this is not as easy (even if we ignore
many practical aspects) because in many cases
we understand that something bad happened
only in retrospect
– Several “good” behaviors collide to create a bad

behavior

And, what about the bugs we are not looking for?

7

“Good” Behavior Collision

Dispatch

M1

M2

M3

Decode

S1

S2

S3S4f S4b

8

“Good” Behavior Collision

§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

Dispatch

M1

M2

M3

Decode

S1

S2

S3S4f S4b

9

“Good” Behavior Collision

§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

§ At cycle 1023 fld F1,100(G2) is
dispatched to the S unit
– It reaches stage S2 at cycle 1024

§ The data returns from the cache
at cycle 1060

Dispatch

M1

M2

M3

Decode

S1

S2

S3S4f S4b

10

“Good” Behavior Collision

§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

§ At cycle 1023 fld F1,100(G2) is
dispatched to the S unit
– It reaches stage S2 at cycle 1024

§ The data returns from the cache
at cycle 1060

§ At cycle 1061 the fdiv is ready to write
– It moves to stage M3

§ At cycle 1061 the fld is ready to write
– It moves to stage S3

Dispatch

M1

M2

M3

Decode

S1

S2

S3S4f S4b

11

“Good” Behavior Collision

§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

§ At cycle 1023 fld F1,100(G2) is
dispatched to the S unit
– It reaches stage S2 at cycle 1024

§ The data returns from the cache
at cycle 1060

§ At cycle 1061 the fdiv is ready to write
– It moves to stage M3

§ At cycle 1061 the fld is ready to write
– It moves to stage S3

§ Both instruction write to the same
register together

Dispatch

M1

M2

M3

Decode

S1

S2

S3S4f S4b

12

“Good” Behavior Collision

§ There are many possible causes for the
problem, e.g.
– bugs in the detection of the data dependency
– bugs in the logic that stalls execution
–

When to check

14

When to Check?

§ Checking can be done at various stages of the
verification job
– During simulation

§ On-the-fly checking
– At the end of simulation

§ End-of-test checking
– After the verification job finishes

§ External checking

§ Checking at each stage has its own advantages
and disadvantages

15

On-the-fly Checking
§ Checking is done while the simulation is running
§ The DUV is continuously monitored to detect erroneous

behavior

Cycle t+0 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

clk

duv_inputs

duv_outputs

Check Expected
vs. Actual

Transaction 1 Transaction 2

Transaction 1 Transaction 2

CheckerStimulus DUV

16

On-the-fly Checking
§ Advantages

– Detection can be as close as possible (in time and
space) to the source of the bug

– Can stop the test as soon as a bug occurs; no wasted
simulation cycles

– Do not require large traces and external tools to do
the checking

§ Disadvantages

17

On-the-fly Checking
Advantages

– Detection can be as close as possible (in time and
space) to the source of the bug

– Can stop the test as soon as a bug occurs; no wasted
simulation cycles

– Do not require large traces and external tools to do
the checking

Disadvantages
– May slow down simulation
– Checking is limited to the allocated time and space
– Need to plan the checking in advance

§ To perform a new check, we need to add a new checker, and
then rerun the simulation.

18

End-of-test Checking
§ Checking is done at the end of simulation
§ The checker inspects the state of internal and external

resources and checks whether they are correct

clk

DUV Instruction

DUV Operands

Internal Resource 1

External Resource 2

Cycle 0 1 2 3 4 5 ………………… t-3 t-2 t-1 t

Instr1 …..

…..

…..

Instr2 Instr3 InstrN
Data1 Data2 Data3 DataN

…..

…..

CheckerStimulus MonitorDUV

19

End-of-test Checking
Disadvantages

– Provides limited checking capabilities
§ Static look at the state of resources at the end of the test

– High probability of masking bugs by repeated writing
to the resources during the simulation

– Hard to detect performance bugs
§ Correct things are happening, but not at the right time

– Hard to correlate symptoms to bugs
§ Difficult to debug

20

End-of-test Checking
Disadvantages

– Provides limited checking capabilities
§ Static look at the state of resources at the end of the test

– High probability of masking bugs by repeated writing
to the resources during the simulation

– Hard to detect performance bugs
§ Correct things are happening, but not at the right time

– Hard to correlate symptoms to bugs
§ Difficult to debug

Advantages
– Simpler than other forms of checking

§ May not require a deep understanding of the DUV
– Reduces probability of false alarms

§ (because bad effects may disappear)

21

External Checking (Monitors)
§ Monitors keep internal resources’ values and behaviors

as well as the DUV outputs in trace files
§ Checking is done by an external program that examines

these files

External
Checker
Program

Stimulus MonitorDUV Actual
Results

clk

duv_inputs

monitor captures
internal

resource(s)

Cycle 0 1 2 3 4 5 ………………… t-3 t-2 t-1 t

Transaction 1 Transaction N…..

…..

22

External Checking
§ External checking separates the checking

from the simulation
– We can perform any check we want without rerunning

the simulation
§ As long as the data is in the trace files

– We can perform more complicated checks
§ Use longer history, process events out-of-order

– We can combine information coming from different
sources
§ For example, different verification environments

In theory, external checking has all the powers of on-the-fly
checking plus end-of-test checking - plus more
(Trace size and amount of traced facilities is a practical

limitation.)

What to check

24

What to Check
§ There are five main sources of checkers

– The inputs and outputs of the design
(specification)

– The architecture of the design
– The microarchitecture of the design
– The implementation of the design
– The context of the design

§ e.g. protocol compliance

(Slide from a previous lecture to remind us of where we
can get inspiration for checkers from.)

25

Coarser Classification – The What and the How

Add 1+2 3

How

What

26

Checking the What
§ Check the final outcome of a behavior

– Data oriented
§ But not limited to data

27

Checking the What
§ Check the final outcome of a behavior

– Data oriented
§ But not limited to data

– Usually based on higher level of abstraction
§ Checking is less tightly focused on implementation

details
§ Requires less familiarity with the DUV

28

Checking the What
§ Check the final outcome of a behavior

– Data oriented
§ But not limited to data

– Usually based on higher level of abstraction
§ Checking is less tightly focused on implementation

details
§ Requires less familiarity with the DUV

– Low correlation between failure, the observed
behavior that violates the spec, and
bugs/faults, the root cause of the failure
§ Harder for debugging

29

Checking the How

§ Check how things are done internally
– Control oriented
– Usually at lower levels of abstraction

§ Closer to implementation
– Tighter correlation between failure and

bugs/faults

the observed
behavior that violates

the specification
the root
cause of

the failure

30

Stimuli Generation and Checking
§ In general, checking should be isolated from the

stimuli generation
– Independence of Checking from Generation
– Modularity: ability to replace the stimuli generator
– Reusability: ability to use the checkers at higher level

of the design hierarchy
§ Exceptions to the rule include

– Self-checking tests
– Golden test vectors

§ Can stimuli generation assist checking?

31

Stimuli Generation and Checking
§ In general, checking should be isolated from the

stimuli generation
– Independence of Checking from Generation
– Modularity: ability to replace the stimuli generator
– Reusability: ability to use the checkers at higher level

of the design hierarchy
§ Exceptions to the rule include

– Self-checking tests
– Golden test vectors

§ Can stimuli generation assist checking?
– The stimuli generation can assist checking by

improving observability
– Help transfer events from dark corners to the spotlight

Checking
Technologies

33

Scoreboards

§ Scoreboards are smart data structures that keep
track of events in the DUV during simulation

§ Usually, scoreboards are global
– One scoreboard per verification environment

§ Scoreboards are not checking mechanisms, but
– The main purpose of using scoreboards is for

checking
– In practice, many checkers are implemented inside

scoreboards
– There are many typical checks that are done with

scoreboards

34

Scoreboard Operation

DUV

Scoreboard

OK?

35

Scoreboards Overview
§ Scoreboards source

information from
– the inputs and outputs

of the DUV, and
– occasionally also from

internal events in the
DUV.

§ Scoreboards are very
useful in dataflow
designs

§ routers
§ cache designs
§ queues and
§ stacks

36

Scoreboards Overview
§ Types of checks enabled

using a scoreboard:
– Matching outputs with inputs

§ No loss of data
– Detect inputs with no

matching output.
§ No creation of data

– Detect output with no
matching input.

§ No unintended modification
of data

37

Scoreboards Overview
§ Types of checks enabled

using a scoreboard:
– Matching outputs with inputs

§ No loss of data
– Detect inputs with no

matching output.
§ No creation of data

– Detect output with no
matching input.

§ No unintended modification
of data

– Timing specification
§ Delay from input to output

remains within specified limits.
– Data order, where specified

§ Are inputs processed in order
of arrival?

38

Scoreboarding in e - 1
§ Assume: DUV does not change order of packets.

– Hence, first packet on scoreboard has to match received packet.
import packet_s;
unit scoreboard {
!expected_packets : list of packet_s;
add_packet(p_in : packet_s) is {
expected_packets.add(p_in);

};

check_packet(p_out : packet_s) is {
var diff : list of string;
-- Compare physical fields of first packet on scb with p_out.
-- Report up to 10 differences.
diff = deep_compare_physical(expected_packets[0], p_out, 10);

check that (diff.is_empty())
else dut_error(‘‘Packet not found on scoreboard’’,

diff);
-- If match was successful, continue.
out(‘‘Found received packet on scoreboard.’’);
expected_packets.delete(0);

};
};

39

Scoreboarding in e - 2

Recording a packet on the scoreboard:
Extend driver such that
– When packet is driven into DUV call add_packet method of

scoreboard.
§ Current packet is copied to scoreboard.

– It is useful to define an event that indicates when packet is being
driven.

Checking for a packet on the scoreboard:
Extend receiver such that
– When a packet was received from DUV call check_packet.

§ Try to find the matching packet on scoreboard.
– It is useful to define an event that indicates when a packet is

being received.

40

Side Note: Graceful End-of-test
Checking that nothing is lost is very important
§ If an input does not have a matching output, how

can we distinguish between these two cases:
– The input is lost or hopelessly stuck in the DUV
– The DUV did not have enough time to handle the input

41

Side Note: Graceful End-of-test
Checking that nothing is lost is very important
§ If an input does not have a matching output, how

can we distinguish between these two cases:
– The input is lost or hopelessly stuck in the DUV
– The DUV did not have enough time to handle the input

§ Possible solution:
– Start a timer when a new input enters the DUV

§ If the timer expires, that input is lost or stuck
– But, what if the delay cannot be bound?

42

Side Note: Graceful End-of-test
Checking that nothing is lost is very important
§ If an input does not have a matching output, how

can we distinguish between these two cases:
– The input is lost or hopelessly stuck in the DUV
– The DUV did not have enough time to handle the input

§ Possible solution:
– Start a timer when a new input enters the DUV

§ If the timer expires, that input is lost or stuck
– But, what if the delay cannot be bound?

§ Alternative (or complementary) solution:
– Stop the inputs before the end of the test and let the

design clean itself
– Because there are no new inputs, things that are stuck

inside have a chance to get processed

43

Reference Models

§ A reference model is an oracle that tells us how
the DUV should behave
– Usually in the form of an alternative implementation

§ It runs in parallel to the DUV, using the same
inputs and provides the checking mechanisms
with information about the expected behavior
– Checking is done by comparing the expected

behavior to the actual one
§ Pure reference models can run independently of

the DUV
– But not all reference models are pure (example later)

44

Reference
Model

Reference Model Operation

DUV

=?

45

Reference Models
Reference models have many uses

– Checking
– Aid stimuli generation

(When?)
§ Check the lecture on Stimuli Generation

– in particular the sections on offline dynamic test
generation

– Act as “smart” protocol models
§ imitate the function of the DUV

– Vehicles for SW development

– Checking
– Aid stimuli generation

(When?)
§ Check the lecture on Stimuli

Generation
– in particular the sections on

offline dynamic test generation

– Act as “smart” protocol
models
§ imitate the function of the DUV

46

Reference Models
What can we check with a reference model?

– In principle, anything
– In practice it depends on the level of detail

and accuracy of the reference model
§ And how much of its behavior we are willing to

expose

47

Levels of Abstraction

§ The level of abstraction in a reference model
dictates the type of information we can get out of
it for checking
– Functionally accurate models can be used only to

check correctness of data, usually at the end of the
test or at well defined points in time
§ timing compliance, order of execution, and similar properties

need other means of checking

48

Levels of Abstraction

§ The level of abstraction in a reference model
dictates the type of information we can get out of
it for checking
– Functionally accurate models can be used only to

check correctness of data, usually at the end of the
test or at well defined points in time
§ timing compliance, order of execution, and similar properties

need other means of checking
– Cycle accurate models can be used for checking all

aspects of I/O behavior

49

Levels of Abstraction

§ The level of abstraction in a reference model
dictates the type of information we can get out of
it for checking
– Functionally accurate models can be used only to

check correctness of data, usually at the end of the
test or at well defined points in time
§ timing compliance, order of execution, and similar properties

need other means of checking
– Cycle accurate models can be used for checking all

aspects of I/O behavior
– Cycle accurate and latch accurate models can be

used also for checking the internal state of the DUV
§ This type of model is sometimes called deep functional

reference model

50

Impure Reference Model

§ Sometimes it is impossible (or very hard) for the
reference model to duplicate significant
decisions made by the DUV

R

!
!

DUV

Reference Model
?

?

51

Impure Reference Model

§ Sometimes it is impossible (or very hard) for the
reference model to duplicate significant
decisions made by the DUV

R

!
!

DUV

Reference Model
?

?

52

Impure Reference Model

§ Sometimes it is impossible (or very hard) for the
reference model to duplicate significant
decisions made by the DUV

§ Possible solution:
Use information from the
DUV to assist the
reference model!

R

!
!

DUV

Reference Model
?

?

53

Impure Reference Model

§ Sometimes it is impossible (or very hard) for the
reference model to duplicate significant
decisions made by the DUV

§ Possible solution:
Use information from the
DUV to assist the
reference model!

R

!
!

DUV

Reference Model
?

?

!

54

Impure Reference Model

§ Sometimes it is impossible (or very hard) for the
reference model to duplicate significant
decisions made by the DUV

§ Possible solution:
Use information from the
DUV to assist the
reference model!

R

!
!

DUV

Reference Model
?

?

!

What are the
shortfalls of impure
reference models?

Contemporary
TB Architecture

56

Contemporary Testbench Architecture
H

. F
os

te
r:

“R
es

po
ns

e
ch

ec
ke

rs
, m

on
ito

rs
 a

nd
 a

ss
er

st
io

ns
”.

In
 P

ra
ct

ic
al

 D
es

ig
n

Ve
rif

ic
at

io
n

by
 P

ra
dh

an
 a

nd
 H

ar
ris

 (e
di

to
rs

).
C

am
br

id
ge

, 2
00

9.

Test
Controller

Scoreboard /
Response Checker

Coverage
Collector

SlaveDUVStimulus
Generator Driver Responder

MonitorMonitor

57

Contemporary Testbench Architecture
H

. F
os

te
r:

“R
es

po
ns

e
ch

ec
ke

rs
, m

on
ito

rs
 a

nd
 a

ss
er

st
io

ns
”.

In
 P

ra
ct

ic
al

 D
es

ig
n

Ve
rif

ic
at

io
n

by
 P

ra
dh

an
 a

nd
 H

ar
ris

 (e
di

to
rs

).
C

am
br

id
ge

, 2
00

9.

Test
Controller

Scoreboard /
Response Checker

Coverage
Collector

SlaveDUVStimulus
Generator Driver Responder

MonitorMonitor

58

Contemporary Testbench Architecture
H

. F
os

te
r:

“R
es

po
ns

e
ch

ec
ke

rs
, m

on
ito

rs
 a

nd
 a

ss
er

st
io

ns
”.

In
 P

ra
ct

ic
al

 D
es

ig
n

Ve
rif

ic
at

io
n

by
 P

ra
dh

an
 a

nd
 H

ar
ris

 (e
di

to
rs

).
C

am
br

id
ge

, 2
00

9.

Test
Controller

Scoreboard /
Response Checker

Coverage
Collector

SlaveDUVStimulus
Generator Driver Responder

MonitorMonitor

59

Contemporary Testbench Architecture
H

. F
os

te
r:

“R
es

po
ns

e
ch

ec
ke

rs
, m

on
ito

rs
 a

nd
 a

ss
er

st
io

ns
”.

In
 P

ra
ct

ic
al

 D
es

ig
n

Ve
rif

ic
at

io
n

by
 P

ra
dh

an
 a

nd
 H

ar
ris

 (e
di

to
rs

).
C

am
br

id
ge

, 2
00

9.

Test
Controller

Scoreboard /
Response Checker

Coverage
Collector

SlaveDUVStimulus
Generator Driver Responder

MonitorMonitor

60

Monitors
§ Monitors are TB components that observe the

inputs, outputs, or internals of the DUV.
– Monitors watch activity of the DUV.

§ Black box: DUV inputs and outputs
§ Grey box: potentially selected internals

– Monitors can convert low-level signals to transactions.
– Monitors can flag simple timing and protocol errors.
– Monitors collect functional coverage.
– Monitors update the scoreboard.
– Monitors don’t drive DUV pins; they are “passive”.

§ Monitors are self-contained and don’t cause “side effects”.
§ Monitors are re-usable at different levels of abstraction.

61

Types of Monitors
§ Input monitors:

– Collect inputs to the DUV and pass them to
scoreboard.

– Can have checker components.

§ Output monitors:
– Observe the outputs from the DUV and pass them to

the scoreboard.
– Can have checker components.

§ Coverage monitors:
– Collect inputs, outputs and selected internal signals.
– Permit analysis of stimulus and functionality coverage.

62

Rule-based Checking

§ Checks that a set of rules hold in the DUV
§ Essentially, all checking is rule-based, e.g.

§ where the “something” can be
– Value of a register matches value in reference model

if (not “something”) then error

63

Rule-based Checking

§ Checks that a set of rules hold in the DUV
§ Essentially, all checking is rule-based, e.g.

§ where the “something” can be
– Value of a register matches value in reference model
– Data in a packet at the DUV output matches data in

the input as stored in the scoreboard

if (not “something”) then error

64

Rule-based Checking

§ Checks that a set of rules hold in the DUV
§ Essentially, all checking is rule-based, e.g.

§ where the “something” can be
– Value of a register matches value in reference model
– Data in a packet at the DUV output matches data in

the input as stored in the scoreboard
– response_out == 0 à data_out == 0

if (not “something”) then error

65

Rule-based Checking
§ Rules can come from many sources

– All levels of the design process
§ Spec, high-level design, lower levels of design, implementation

– Behavior of neighboring units

66

Rule-based Checking
§ Rules can come from many sources

– All levels of the design process
§ Spec, high-level design, lower levels of design, implementation

– Behavior of neighboring units
§ Rules checking can be implemented in many places

– External checking tools
– Various places in the verification environment

§ Interface monitors
§ Scoreboards
§ End-of-test checkers

– In the DUV itself!

67

Rule-based Checking
§ Rules can come from many sources

– All levels of the design process
§ Spec, high-level design, lower levels of design, implementation

– Behavior of neighboring units
§ Rules checking can be implemented in many places

– External checking tools
– Various places in the verification environment

§ Interface monitors
§ Scoreboards
§ End-of-test checkers

– In the DUV itself!
§ Rule-based checkers embedded in the DUV code

are called assertions
– Lecture on Assertion-Based Verification

68

Contemporary Testbench Architecture
H

. F
os

te
r:

“R
es

po
ns

e
ch

ec
ke

rs
, m

on
ito

rs
 a

nd
 a

ss
er

st
io

ns
”.

In
 P

ra
ct

ic
al

 D
es

ig
n

Ve
rif

ic
at

io
n

by
 P

ra
dh

an
 a

nd
 H

ar
ris

 (e
di

to
rs

).
C

am
br

id
ge

, 2
00

9.

Test
Controller

Scoreboard /
Response Checker

Coverage
Collector

SlaveDUVStimulus
Generator Driver Responder

MonitorMonitor

AssertionsRule-based Checkers

69

Self-Checking Testbenches
§ Knowledge of the DUV’s functionality can

be built into the TB.
– This automates the checking process.
– Verification engineers encode their knowledge

of correct DUV functionality into the checkers,
monitors and scoreboard using:
§ Golden Vectors,
§ Reference Models,
§ Protocols or Transactions,
§ Assertions.

§ This results in a “self-checking” TB.
– Checkers are “always” active.

70

Checking: Practical Aspects

Consider the following:
1. The cost of implementation and maintenance of

checkers vs the cost of debugging (without
checkers).

2. The cost of mistakes
– Missed detection

§ We failed to detect a bug that was exposed by the stimuli.
– False alarm

§ We mistakenly flagged a good behavior as bad.

Which is more expensive?

Summary

Coverage Driven Verification
Methodology
è Coverage Directed Test Generation

Driver

Checker
ü (Stimuli Generation)
ü Checking
§ ABV
§ Coverage

