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Checking: Outline

§ Motivation  
§ Issues in checking

– When to check
– What to check

§ Checking technologies
– Reference models
– Scoreboards
– Rule-based checking

https://clipartix.com/detective-clipart/
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Checking: Outline

§ Motivation  
§ Issues in checking

– When to check
– What to check

§ Checking technologies
– Reference models
– Scoreboards
– Rule-based checking
– Assertion-based verification (ABV) (later)

https://clipartix.com/detective-clipart/
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The Yin & Yang of Verification

– We cannot find bugs 
without creating the 
failing conditions.

– We cannot find 
bugs without 
detecting the 
incorrect behavior.

Driver

Checker

§ Driving and checking are the yin and 
yang of verification



The Importance of Driving and Checking

§ Drivers activate the bug.
§ The observable effects of the bug then 

need to propagate to a checker.
§ A checker needs to be in place to detect

the incorrect behaviour.

All three are needed to find bugs!

Activation Propagation Detection
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Ideal Checking
§ In theory, we wish to detect deviations from the 

expected behavior as soon as these happen 
and, ideally, where they happen
– Easy to debug: the checker points to the bug
– No need to worry about “disappearing errors”

§ In reality, this is not as easy (even if we ignore 
many practical aspects) because in many cases 
we understand that something bad happened 
only in retrospect
– Several “good” behaviors collide to create a bad 

behavior

And, what about the bugs we are not looking for?
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“Good” Behavior Collision
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“Good” Behavior Collision

§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles
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§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

§ At cycle 1023 fld F1,100(G2) is 
dispatched to the S unit
– It reaches stage S2 at cycle 1024

§ The data returns from the cache 
at cycle 1060
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§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

§ At cycle 1023 fld F1,100(G2) is 
dispatched to the S unit
– It reaches stage S2 at cycle 1024

§ The data returns from the cache 
at cycle 1060

§ At cycle 1061 the fdiv is ready to write
– It moves to stage M3

§ At cycle 1061 the fld is ready to write
– It moves to stage S3
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“Good” Behavior Collision

§ At cycle 1000 fdiv F1, F2, F3 is dispatched to the M unit
– It reaches stage M2 at cycle 1001
– Its execution time is 60 cycles

§ At cycle 1023 fld F1,100(G2) is 
dispatched to the S unit
– It reaches stage S2 at cycle 1024

§ The data returns from the cache 
at cycle 1060

§ At cycle 1061 the fdiv is ready to write
– It moves to stage M3

§ At cycle 1061 the fld is ready to write
– It moves to stage S3

§ Both instruction write to the same 
register together

Dispatch
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“Good” Behavior Collision

§ There are many possible causes for the 
problem, e.g.
– bugs in the detection of the data dependency
– bugs in the logic that stalls execution 
– ....



When to check
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When to Check?

§ Checking can be done at various stages of the 
verification job
– During simulation

§ On-the-fly checking
– At the end of simulation

§ End-of-test checking
– After the verification job finishes

§ External checking

§ Checking at each stage has its own advantages 
and disadvantages
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On-the-fly Checking
§ Checking is done while the simulation is running
§ The DUV is continuously monitored to detect erroneous 

behavior 

Cycle t+0 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11    t+12

clk

duv_inputs

duv_outputs

Check Expected 
vs. Actual

Transaction 1 Transaction 2

Transaction 1 Transaction 2

CheckerStimulus DUV
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On-the-fly Checking
§ Advantages

– Detection can be as close as possible (in time and 
space) to the source of the bug 

– Can stop the test as soon as a bug occurs; no wasted 
simulation cycles

– Do not require large traces and external tools to do 
the checking

§ Disadvantages
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On-the-fly Checking
Advantages

– Detection can be as close as possible (in time and 
space) to the source of the bug

– Can stop the test as soon as a bug occurs; no wasted 
simulation cycles

– Do not require large traces and external tools to do 
the checking

Disadvantages
– May slow down simulation
– Checking is limited to the allocated time and space 
– Need to plan the checking in advance

§ To perform a new check, we need to add a new checker, and 
then rerun the simulation.
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End-of-test Checking
§ Checking is done at the end of simulation
§ The checker inspects the state of internal and external 

resources and checks whether they are correct

clk

DUV Instruction

DUV Operands

Internal Resource 1 

External Resource 2

Cycle 0 1 2 3 4 5 ………………… t-3 t-2 t-1 t

Instr1 …..

…..

…..

Instr2 Instr3 InstrN
Data1 Data2 Data3 DataN

…..

…..

CheckerStimulus MonitorDUV
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End-of-test Checking
Disadvantages

– Provides limited checking capabilities
§ Static look at the state of resources at the end of the test

– High probability of masking bugs by repeated writing 
to the resources during the simulation

– Hard to detect performance bugs
§ Correct things are happening, but not at the right time 

– Hard to correlate symptoms to bugs
§ Difficult to debug
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End-of-test Checking
Disadvantages

– Provides limited checking capabilities
§ Static look at the state of resources at the end of the test

– High probability of masking bugs by repeated writing 
to the resources during the simulation

– Hard to detect performance bugs
§ Correct things are happening, but not at the right time 

– Hard to correlate symptoms to bugs
§ Difficult to debug

Advantages
– Simpler than other forms of checking

§ May not require a deep understanding of the DUV
– Reduces probability of false alarms

§ (because bad effects may disappear)
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External Checking (Monitors)
§ Monitors keep internal resources’ values and behaviors 

as well as the DUV outputs in trace files
§ Checking is done by an external program that examines 

these files

External
Checker
Program

Stimulus MonitorDUV Actual 
Results

clk

duv_inputs

monitor captures 
internal 

resource(s)

Cycle 0 1 2 3 4 5 ………………… t-3 t-2 t-1 t

Transaction 1 Transaction N…..

…..
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External Checking
§ External checking separates the checking 

from the simulation
– We can perform any check we want without rerunning 

the simulation
§ As long as the data is in the trace files

– We can perform more complicated checks
§ Use longer history, process events out-of-order

– We can combine information coming from different 
sources
§ For example, different verification environments

In theory, external checking has all the powers of on-the-fly 
checking plus end-of-test checking - plus more
(Trace size and amount of traced facilities is a practical 

limitation.)



What to check
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What to Check
§ There are five main sources of checkers

– The inputs and outputs of the design 
(specification)

– The architecture of the design
– The microarchitecture of the design
– The implementation of the design
– The context of the design 

§ e.g. protocol compliance

(Slide from a previous lecture to remind us of where we 
can get inspiration for checkers from.) 
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Coarser Classification – The What and the How

Add 1+2 3

How

What
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Checking the What
§ Check the final outcome of a behavior

– Data oriented
§ But not limited to data
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Checking the What
§ Check the final outcome of a behavior

– Data oriented
§ But not limited to data

– Usually based on higher level of abstraction
§ Checking is less tightly focused on implementation 

details
§ Requires less familiarity with the DUV
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Checking the What
§ Check the final outcome of a behavior

– Data oriented
§ But not limited to data

– Usually based on higher level of abstraction
§ Checking is less tightly focused on implementation 

details
§ Requires less familiarity with the DUV

– Low correlation between failure, the observed 
behavior that violates the spec, and 
bugs/faults, the root cause of the failure
§ Harder for debugging
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Checking the How

§ Check how things are done internally
– Control oriented
– Usually at lower levels of abstraction

§ Closer to implementation
– Tighter correlation between failure and 

bugs/faults

the observed 
behavior that violates 

the specification
the root 
cause of 

the failure
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Stimuli Generation and Checking
§ In general, checking should be isolated from the 

stimuli generation
– Independence of Checking from Generation
– Modularity: ability to replace the stimuli generator
– Reusability: ability to use the checkers at higher level 

of the design hierarchy
§ Exceptions to the rule include

– Self-checking tests
– Golden test vectors

§ Can stimuli generation assist checking?
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Stimuli Generation and Checking
§ In general, checking should be isolated from the 

stimuli generation
– Independence of Checking from Generation
– Modularity: ability to replace the stimuli generator
– Reusability: ability to use the checkers at higher level 

of the design hierarchy
§ Exceptions to the rule include

– Self-checking tests
– Golden test vectors

§ Can stimuli generation assist checking?
– The stimuli generation can assist checking by 

improving observability
– Help transfer events from dark corners to the spotlight



Checking 
Technologies
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Scoreboards

§ Scoreboards are smart data structures that keep 
track of events in the DUV during simulation

§ Usually, scoreboards are global
– One scoreboard per verification environment

§ Scoreboards are not checking mechanisms, but
– The main purpose of using scoreboards is for 

checking
– In practice, many checkers are implemented inside 

scoreboards
– There are many typical checks that are done with 

scoreboards
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Scoreboard Operation

DUV

Scoreboard

OK?
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Scoreboards Overview
§ Scoreboards source 

information from
– the inputs and outputs 

of the DUV, and
– occasionally also from 

internal events in the 
DUV.

§ Scoreboards are very 
useful in dataflow 
designs

§ routers 
§ cache designs 
§ queues and 
§ stacks
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Scoreboards Overview
§ Types of checks enabled 

using a scoreboard:
– Matching outputs with inputs

§ No loss of data
– Detect inputs with no 

matching output.
§ No creation of data

– Detect output with no 
matching input.

§ No unintended modification
of data
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Scoreboards Overview
§ Types of checks enabled 

using a scoreboard:
– Matching outputs with inputs

§ No loss of data
– Detect inputs with no 

matching output.
§ No creation of data

– Detect output with no 
matching input.

§ No unintended modification
of data

– Timing specification
§ Delay from input to output 

remains within specified limits. 
– Data order, where specified

§ Are inputs processed in order 
of arrival? 
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Scoreboarding in e - 1
§ Assume: DUV does not change order of packets.

– Hence, first packet on scoreboard has to match received packet.
import packet_s;
unit scoreboard {
!expected_packets : list of packet_s;
add_packet(p_in : packet_s) is {
expected_packets.add(p_in);

};

check_packet(p_out : packet_s) is {
var diff : list of string;
-- Compare physical fields of first packet on scb with p_out.
-- Report up to 10 differences.
diff = deep_compare_physical(expected_packets[0], p_out, 10);

check that (diff.is_empty())
else dut_error(‘‘Packet not found on scoreboard’’, 

diff);
-- If match was successful, continue.
out(‘‘Found received packet on scoreboard.’’);
expected_packets.delete(0);

};
};
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Scoreboarding in e - 2

Recording a packet on the scoreboard:
Extend driver such that
– When packet is driven into DUV call add_packet method of 

scoreboard.
§ Current packet is copied to scoreboard.

– It is useful to define an event that indicates when packet is being 
driven.

Checking for a packet on the scoreboard:
Extend receiver such that
– When a packet was received from DUV call check_packet.

§ Try to find the matching packet on scoreboard.
– It is useful to define an event that indicates when a packet is 

being received.
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Side Note: Graceful End-of-test
Checking that nothing is lost is very important
§ If an input does not have a matching output, how 

can we distinguish between these two cases:
– The input is lost or hopelessly stuck in the DUV
– The DUV did not have enough time to handle the input
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Side Note: Graceful End-of-test
Checking that nothing is lost is very important
§ If an input does not have a matching output, how 

can we distinguish between these two cases:
– The input is lost or hopelessly stuck in the DUV
– The DUV did not have enough time to handle the input

§ Possible solution:
– Start a timer when a new input enters the DUV

§ If the timer expires, that input is lost or stuck
– But, what if the delay cannot be bound?
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Side Note: Graceful End-of-test
Checking that nothing is lost is very important
§ If an input does not have a matching output, how 

can we distinguish between these two cases:
– The input is lost or hopelessly stuck in the DUV
– The DUV did not have enough time to handle the input

§ Possible solution:
– Start a timer when a new input enters the DUV

§ If the timer expires, that input is lost or stuck
– But, what if the delay cannot be bound?

§ Alternative (or complementary) solution:
– Stop the inputs before the end of the test and let the 

design clean itself
– Because there are no new inputs, things that are stuck 

inside have a chance to get processed



43

Reference Models

§ A reference model is an oracle that tells us how 
the DUV should behave
– Usually in the form of an alternative implementation 

§ It runs in parallel to the DUV, using the same 
inputs and provides the checking mechanisms 
with information about the expected behavior
– Checking is done by comparing the expected 

behavior to the actual one
§ Pure reference models can run independently of 

the DUV 
– But not all reference models are pure (example later)
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Reference 
Model

Reference Model Operation

DUV

=?
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Reference Models
Reference models have many uses

– Checking
– Aid stimuli generation 

(When?)
§ Check the lecture on Stimuli Generation

– in particular the sections on offline dynamic test 
generation

– Act as “smart” protocol models 
§ imitate the function of the DUV

– Vehicles for SW development

– Checking
– Aid stimuli generation 

(When?)
§ Check the lecture on Stimuli 

Generation
– in particular the sections on 

offline dynamic test generation

– Act as “smart” protocol 
models  
§ imitate the function of the DUV
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Reference Models
What can we check with a reference model?

– In principle, anything
– In practice it depends on the level of detail 

and accuracy of the reference model
§ And how much of its behavior we are willing to 

expose
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Levels of Abstraction

§ The level of abstraction in a reference model 
dictates the type of information we can get out of 
it for checking
– Functionally accurate models can be used only to 

check correctness of data, usually at the end of the 
test or at well defined points in time
§ timing compliance, order of execution, and similar properties 

need other means of checking
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Levels of Abstraction

§ The level of abstraction in a reference model 
dictates the type of information we can get out of 
it for checking
– Functionally accurate models can be used only to 

check correctness of data, usually at the end of the 
test or at well defined points in time
§ timing compliance, order of execution, and similar properties 

need other means of checking
– Cycle accurate models can be used for checking all 

aspects of I/O behavior 
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Levels of Abstraction

§ The level of abstraction in a reference model 
dictates the type of information we can get out of 
it for checking
– Functionally accurate models can be used only to 

check correctness of data, usually at the end of the 
test or at well defined points in time
§ timing compliance, order of execution, and similar properties 

need other means of checking
– Cycle accurate models can be used for checking all 

aspects of I/O behavior 
– Cycle accurate and latch accurate models can be 

used also for checking the internal state of the DUV
§ This type of model is sometimes called deep functional 

reference model
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Impure Reference Model

§ Sometimes it is impossible (or very hard) for the 
reference model to duplicate significant 
decisions made by the DUV

R

!
!

DUV
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?
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Impure Reference Model

§ Sometimes it is impossible (or very hard) for the 
reference model to duplicate significant 
decisions made by the DUV

§ Possible solution:
Use information from the
DUV to assist the 
reference model!
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!
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Impure Reference Model

§ Sometimes it is impossible (or very hard) for the 
reference model to duplicate significant 
decisions made by the DUV

§ Possible solution:
Use information from the
DUV to assist the                                         
reference model! 

R

!
!

DUV

Reference Model
?

?

!



54

Impure Reference Model

§ Sometimes it is impossible (or very hard) for the 
reference model to duplicate significant 
decisions made by the DUV

§ Possible solution:
Use information from the
DUV to assist the                                         
reference model!

R

!
!

DUV

Reference Model
?

?

!

What are the 
shortfalls of impure                                 
reference models?



Contemporary 
TB Architecture
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Contemporary Testbench Architecture
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Monitors
§ Monitors are TB components that observe the 

inputs, outputs, or internals of the DUV.
– Monitors watch activity of the DUV.

§ Black box: DUV inputs and outputs 
§ Grey box: potentially selected internals

– Monitors can convert low-level signals to transactions.
– Monitors can flag simple timing and protocol errors.
– Monitors collect functional coverage.
– Monitors update the scoreboard.
– Monitors don’t drive DUV pins; they are “passive”. 

§ Monitors are self-contained and don’t cause “side effects”.
§ Monitors are re-usable at different levels of abstraction.
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Types of Monitors
§ Input monitors:

– Collect inputs to the DUV and pass them to 
scoreboard.

– Can have checker components.

§ Output monitors:
– Observe the outputs from the DUV and pass them to 

the scoreboard.
– Can have checker components.

§ Coverage monitors:
– Collect inputs, outputs and selected internal signals.
– Permit analysis of stimulus and functionality coverage.
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Rule-based Checking

§ Checks that a set of rules hold in the DUV
§ Essentially, all checking is rule-based, e.g.

§ where the “something” can be
– Value of a register matches value in reference model

if (not “something”) then error
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Rule-based Checking

§ Checks that a set of rules hold in the DUV
§ Essentially, all checking is rule-based, e.g.

§ where the “something” can be
– Value of a register matches value in reference model
– Data in a packet at the DUV output matches data in 

the input as stored in the scoreboard

if (not “something”) then error
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Rule-based Checking

§ Checks that a set of rules hold in the DUV
§ Essentially, all checking is rule-based, e.g.

§ where the “something” can be
– Value of a register matches value in reference model
– Data in a packet at the DUV output matches data in 

the input as stored in the scoreboard
– response_out == 0 à data_out == 0

if (not “something”) then error
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Rule-based Checking
§ Rules can come from many sources

– All levels of the design process
§ Spec, high-level design, lower levels of design, implementation

– Behavior of neighboring units



66

Rule-based Checking
§ Rules can come from many sources

– All levels of the design process
§ Spec, high-level design, lower levels of design, implementation

– Behavior of neighboring units
§ Rules checking can be implemented in many places

– External checking tools
– Various places in the verification environment

§ Interface monitors
§ Scoreboards
§ End-of-test checkers

– In the DUV itself!
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Rule-based Checking
§ Rules can come from many sources

– All levels of the design process
§ Spec, high-level design, lower levels of design, implementation

– Behavior of neighboring units
§ Rules checking can be implemented in many places

– External checking tools
– Various places in the verification environment

§ Interface monitors
§ Scoreboards
§ End-of-test checkers

– In the DUV itself!
§ Rule-based checkers embedded in the DUV code 

are called assertions
– Lecture on Assertion-Based Verification 
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Self-Checking Testbenches
§ Knowledge of the DUV’s functionality can 

be built into the TB.
– This automates the checking process.
– Verification engineers encode their knowledge 

of correct DUV functionality into the checkers, 
monitors and scoreboard using:
§ Golden Vectors,
§ Reference Models,
§ Protocols or Transactions,
§ Assertions.

§ This results in a “self-checking” TB.
– Checkers are “always” active.
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Checking: Practical Aspects

Consider the following:
1. The cost of implementation and maintenance of 

checkers vs the cost of debugging (without 
checkers).

2. The cost of mistakes
– Missed detection

§ We failed to detect a bug that was exposed by the stimuli.
– False alarm

§ We mistakenly flagged a good behavior as bad.

Which is more expensive?



Summary

Coverage Driven Verification 
Methodology 
è Coverage Directed Test Generation

Driver

Checker
ü (Stimuli Generation)
ü Checking
§ ABV
§ Coverage


