
COMS30026 Design Verification

Stimuli Generation
(Part I)

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

Outline
Motivation: Advanced Stimuli Generation

– Running example: PowerPC processor

Part I: Issues in stimuli generation
– How many generators?
– Level of abstraction
– Online vs. offline generation
– Dynamic vs. static generation
– Test length

Part II: Test Automation
– Randomness
– Constrained pseudo-random stimulus generation

3

Goals of Stimuli Generation

§ Achieve all the items in the test scenarios matrix
of the verification plan
– Ensure that the scenarios in the matrix are happening
– Ensure that any anomalies are propagating to an

existing checker
§ Hitting a bug without exposing it is worth nothing

4

Goals of Stimuli Generation

§ Achieve all the items in the test scenarios matrix
of the verification plan
– Ensure that the scenarios in the matrix are happening
– Ensure that any anomalies are propagating to an

existing checker
§ Hitting a bug without exposing it is worth nothing

§ But also
– Hitting and exposing all the problems we did not think

about in the verification plan

5

Goals of Stimuli Generation

§ Achieve all the items in the test scenarios matrix
of the verification plan
– Ensure that the scenarios in the matrix are happening
– Ensure that any anomalies are propagating to an

existing checker
§ Hitting a bug without exposing it is worth nothing

§ But also
– Hitting and exposing all the problems we did not think

about in the verification plan
– Providing information about the design and helping

recreate and understand problems identified

6

Goals of Stimuli Generation

§ Achieve all the items in the test scenarios matrix
of the verification plan
– Ensure that the scenarios in the matrix are happening
– Ensure that any anomalies are propagating to an

existing checker
§ Hitting a bug without exposing it is worth nothing

§ But also
– Hitting and exposing all the problems we did not think

about in the verification plan
– Providing information about the design and helping

recreate and understand problems identified
– Ensure that nothing gets broken over time

7

Running Example – PowerPC Processor

§ Black box view
– Interface to memory (via

caches)
§ For instruction fetching
§ For data fetching and

storing

– Interface to I/O devices
§ For data fetching and

storing
§ Interrupts

– Miscellaneous interface
§ Clocks
§ Reset
§ …

PowerPC
ProcessorMemory

Instructions

Data

I/O

Clock Reset

8

Architectural View
§ RISC (Reduced Instruction Set Computer) processor

– “Small” number of instructions (~400)
– One simple operation per instruction
– Fixed length instructions (32 bits = 1 word)
– Specific load and store instructions to access memory

§ All other instructions use registers for operands
§ Large register files

– 32 general purpose registers (GPR)
– 32 floating-point registers (FPR)

§ Used only for floating-point operations
– Several special purpose registers

§ Condition register, link register, status register, etc.
§ Complex memory model

– Multiple level address translation
– Coherency rules
– (not in the scope of the lecture)

9

Microarchitectural View

§ Multi-threaded
§ In-order execution
§ Four instructions wide

– Fetch
– Decode
– Dispatch

§ Four execution units
– B: Branch
– R: Simple Arithmetic
– M: Complex Arithmetic
– S: Load Store

Dispatch

B1

B2

B3

R1

R2

R3

M1

M2

M3

S1

S2

S3S4f S4b

Data Fetch

Execute

Write Back

Decode

Fetch

I Cache

D Cache

10

Extracts from the Verification Plan

1. Check that all pairs of instructions are
executed correctly together
– Basic architectural requirement
– Appears in most verification plans of processors
– Fulfilling it is not as easy at it seems

2. Check that all forwarding mechanisms
between pipeline stages are working properly
– Basic microarchitectural requirement
– Source for many bugs in previous designs

11

Processor Verification Environment

PowerPC
Processor

Instructions
D

river

I/O
D

river

Memory
Driver

Instr I/O

D
ata

Instructions
Generator

I/O
Generator

Memory
Generator

12

Issues in Stimuli Generation

§ How many generators?
§ Level of abstraction
§ Online vs. offline generation
§ Dynamic vs. static generation
§ Test length

13

How Many Generators?

§ Distributed generators
– Each interface has its own generator
– Each generator works on its own
– Advantages

§ Simple
§ Easy to reuse

– Disadvantages
§ Hard to reach corner cases in coordinated fashion

PowerPC
Processor

Instr.
D

river

I/O
D

river

Memory Driver

Instr.
Generator

I/O
Generator

Memory Generator

14

How Many Generators?

§ Single generator
– One generator controls all the interfaces
– Advantages

§ All the interfaces can work together toward a common goal
– Disadvantages

§ Complex
§ Hard to reuse

PowerPC
Processor

Instr.
D

river

I/O
D

river

Memory Driver

Unified Generator

15

How Many Generators?

§ Synchronized generators
– Each interface has its own generator
– The generators share information and synchronize
– Advantages

§ Can reuse each generator separately
§ Can work together towards a common goal

PowerPC
Processor

Instr.
D

river

I/O
D

river

Memory Driver

Instr.
Generator

I/O
Generator

Memory Generator

16

Abstraction Level of Generation

DUV

Bit Level
(no abstraction)

Command & Data
instruction level

Groups of bits

Groups of
instructions

Groups of
sequences

across
time

Designer

SystemProgram or
Algorithmic Level

Sequence Level

17

Abstraction Level of Generation

DUV

Bit Level
(no abstraction)

Command & Data
instruction level

Groups of bits

Groups of
instructions

Groups of
sequences

across
time

Designer

SystemProgram or
Algorithmic Level

Sequence Level

While bit-level representation allows
us to see how the data exercises

the carry chain, at a higher level of
abstraction (looking at the integer

values) we may not spot this.

18

What Does Abstraction Level Mean?
§ Communication between the user and the

generator
§ Internal representation and operation level in the

generator

§ Communication between the generator and the
driver

§ The level in which the generator generates the stimuli

§ The generator sends information at high level of abstraction
§ The driver translates into bits using the appropriate protocol

§ How the user specifies directives to the generator

19

Which Abstraction Level To Choose?
§ Communication between the user (verification engineer)

and the generator
– Use a level similar to the level used in the verification plan
– In our case (running example) – the sequence level

20

Which Abstraction Level To Choose?
§ Communication between the user (verification engineer)

and the generator
– Use a level similar to the level used in the verification plan
– In our case (running example) – the sequence level

§ Internal representation and
i.e. the operation level
in the test generator
– Conflicting requirements

§ Address user requirements (at their level) à high level of abstraction
§ Need sufficient detail à low level of abstraction

– In many cases we use two or more levels for stimuli generation
§ First we build a high-level skeleton of the stimuli based on the user

requirements
§ Next we add lower-level details

21

Which Abstraction Level To Choose?
§ Communication between the user (verification engineer)

and the generator
– Use a level similar to the level used in the verification plan
– In our case (running example) – the sequence level

§ Internal representation and
i.e. the operation level
in the test generator
– Conflicting requirements

§ Address user requirements (at their level) à high level of abstraction
§ Need sufficient detail à low level of abstraction

– In many cases we use two or more levels for stimuli generation
§ First we build a high-level skeleton of the stimuli based on the user

requirements
§ Next we add lower-level details

§ Communication between the test generator and the driver
– Use the lowest level in which the test generator operates
– Special case – error injection

22

Error Injection
§ Error detection and recovery are very important

mechanisms in hardware designs
– They are also very hard to verify

§ Error injection is usually done at the lowest level of
abstraction
– The value of a bit (or set of bits) is flipped when they are injected

into the DUV

§ To allow error injection, the generator needs to operate and
communicate with the driver at the bit level
– This creates extra burden and unnecessarily increases complexity

for normal cases

23

Error Injection
§ Error detection and recovery are very important

mechanisms in hardware designs
– They are also very hard to verify

§ Error injection is usually done at the lowest level of
abstraction
– The value of a bit (or set of bits) is flipped when they are injected

into the DUV

§ To allow error injection, the test generator needs to operate
and communicate with the driver at the bit level
– This creates extra burden and unnecessarily increases complexity

for normal cases

§ Possible solution – create a separate error injection
interface between the test generator and driver
– At the low level of the error injection, i.e. directly injecting the error
– At the normal level with instructions on how to inject the error

24

Online vs Offline Generation
When to generate stimuli?
§ Offline generation (pre-run):

– The entire stimuli are generated before the simulation
begins

– The generation and simulation can be two separated
processes

§ Online generation (on-the-fly):
– Stimuli generation during simulation
– The next element is generated when needed by the

driver
– The generator must be part of the verification

environment

25

Offline Generation
§ Why

– Can separate the test generation from simulation
§ Use external tools, emulation, …

– Can use more complex algorithms for test generation
§ For example, generate “out of order”, e.g. instruction

sequences (processors) or action sequences (robotics)
– Offline test generation may be compulsory Where?

§ Why not

26

Offline Generation
§ Why

– Can separate the test generation from simulation
§ Use external tools, emulation, …

– Can use more complex algorithms for test generation
§ For example, generate “out of order”, e.g. instruction

sequences (processors) or action sequences (robotics)
– Offline test generation may be compulsory Where?

§ Why not
– Need to connect the test generation output to the

verification environment
– Cannot use information directly from the DUV during

simulation, nor from the environment
– Hard to react to unexpected but valid responses from

the DUV

27

Generating Instructions Out Of Order

§ Verification goal: forward data from M2 to B2
– Branch is dispatched after arithmetic instruction
– Both reach stage 2 together
– To preserve functional correctness,

the branch must wait for the
arithmetic instruction to complete Dispatch

B1

B2

B3

M1

M2

M3

Data Fetch

Execute

Write Back

Decode

How can we generate a test, i.e. a sequence of instructions, that achieves this goal
(efficiently and effectively)?

28

Generating Instructions Out Of Order

Dispatch

B1

B2

B3

M1

M2

M3

Data Fetch

Execute

Write Back

Decode

Generation Order: Br – Mul – Div – Lw - Add

Lw G10, 60(G21)
Add G7, G9, G13
Mul G1, G2, G3
Div G4, G5, G6

Br 100(G1)1
3
2
4
4

Execution Order: Lw – Add – Mul – Div - Br

§ Verification goal: forward data from M2 to B2
– Branch is dispatched after arithmetic instruction
– Both reach stage 2 together
– To preserve functional correctness,

the branch must wait for the
arithmetic instruction to complete

29

Online Generation
§ Why

– The generator can use information about the state of
the environment and DUV for improving the quality of
generation
§ Makes reaching corner cases easier

– The only solution to react to unexpected but valid
behaviour of the DUV

– Generally small memory footprint

§ Why not

30

Online Generation
§ Why

– The generator can use information about the state of
the environment and DUV for improving the quality of
generation
§ Makes reaching corner cases easier

– The only solution to react to unexpected but valid
behaviour of the DUV

– Generally small memory footprint

§ Why not
– Must generate items in order
– Limited complexity
– <any other reasons why not>

31

Online Generation
§ Why

– The generator can use information about the state of
the environment and DUV for improving the quality of
generation
§ Makes reaching corner cases easier

– The only solution to react to unexpected but valid
behaviour of the DUV

– Generally small memory footprint

§ Why not
– Must generate items in order
– Limited complexity
– Performance: online test generation slows down

simulation

32

Mixing online and offline Generation

§ Online and offline generation can be
mixed within a verification environment

§ Which designs would benefit from this
combination?

33

Mixing online and offline Generation

§ Online and offline generation can be
mixed within a verification environment

§ Which designs would benefit from this
combination?

Processor verification: instruction sequences
are generated from high-level programs
through compilation, i.e. offline using an

external tool – the compiler, but the interrupts
are generated online, when the processor is in

an interesting state. J

34

Dynamic vs. Static Generation
§ In static generation the test generator is not aware

of the state of the DUV and the environment
– Generation decisions are based entirely on the internal

state of the test generator
§ Alternatively, we can take a less restrictive view on

static generation: the test generator is aware of
what and when it is allowed to generate

§ In calc1 the generator knows not to generate a new command
before a response for the previous command has been received

§ In dynamic generation the test generator is fully
aware of the state of the DUV and the environment
and generates based on this information
– The test generator can react to interesting states

in the DUV

35

Dynamic Instruction Generation Example

§ Verification goal: forward data from M2 to B2
– The generator identifies the potential

forwarding condition “on the fly”, i.e. when it
spots the mul instruction

– It generates instruction(s)
that will block the br(anch)
from dispatching with the
mul instruction

– It generates a br instruction
that uses the same register
as the destination of the mul
instruction to create the
dependency that triggers forwarding

Dispatch

B1

B2

B3

M1

M2

M3

Data Fetch

Execute

Write Back

Decode

Next instruction

mul

add

?
?

div
br

36

Does This Example Work?
§ This example may not work!
§ Main reason:

– There is a distance (in terms of time) from the
entry point of instructions into the processor to
the dispatch queue. This distance creates
delays.

– Many bad things can happen while the br
instruction travels this distance
§ For example, exceptions that flush the pipes

– By the time the br instruction reaches the
relevant stage in the pipe to trigger forwarding,
the interesting condition may already have gone

37

Dynamic vs. Static Generation

§ Dynamic test generation is based on reaction
while static test generation is based on planning

§ In general, reaction is harder than planning
– Time is a factor
– Unexpected events can get in the way

§ Most generators use dynamic features lightly
– Observe and react to shallow or stable states of the

DUV
§ For example, architectural registers or the state of a fifo, e.g.

it being almost full.

38

Offline Dynamic Generation

§ Dynamic and static generation should not
be confused with online and offline
generation

§ An offline generator can use dynamic
generation by using a reference model
that provides information about the state of
the DUV
– The level and accuracy of the information depends on

the abstraction level and accuracy of the reference
model

39

Test Length

§ Two extreme approaches for selecting the test
length

§ Use short tests
– The shortest tests that can fulfill the requirement in

the verification plan
– For the instruction pairs requirement use tests with

just two instructions J
§ Use long tests

– Combine many requirements in a single test
– Wrap a test with initial and end sequences

40

Why Short Tests?

§ Easy to create
§ Easy to debug
§ Easy to maintain
§ Short time to simulate each

Short tests vs. long tests

42

Why Long Tests?
§ Need fewer tests
§ Less time to simulate

– Overall less time as we do not need to repeat the
initialization sequence for every test ;)

43

Why Long Tests?
§ Need fewer tests
§ Less time to simulate

– Overall less time as we do not need to repeat the
initialization sequence for every test ;)

§ Test is not at or near the initial state most of the
time, which is the case when using short tests

§ Go along less traveled paths, which results in a
greater variety in terms of exercising the logic

§ Reach verification targets in different ways
– Often leads to reaching the targets in unexpected

ways

44

Summary of Part I
Part I: Issues in stimuli generation

– How many generators?
– Level of abstraction
– Online vs. offline generation
– Dynamic vs. static generation
– Test length

Part II: Test Automation
– Randomness
– Constrained pseudo-random stimulus

generation

