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Outline
Motivation: Advanced Stimuli Generation

– Running example: PowerPC processor

Part I: Issues in stimuli generation
– How many generators?
– Level of abstraction
– Online vs. offline generation
– Dynamic vs. static generation
– Test length

Part II: Test Automation 
– Randomness
– Constrained pseudo-random stimulus generation
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Goals of Stimuli Generation

§ Achieve all the items in the test scenarios matrix 
of the verification plan
– Ensure that the scenarios in the matrix are happening
– Ensure that any anomalies are propagating to an 

existing checker
§ Hitting a bug without exposing it is worth nothing
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Goals of Stimuli Generation

§ Achieve all the items in the test scenarios matrix 
of the verification plan
– Ensure that the scenarios in the matrix are happening
– Ensure that any anomalies are propagating to an 

existing checker
§ Hitting a bug without exposing it is worth nothing

§ But also
– Hitting and exposing all the problems we did not think 

about in the verification plan
– Providing information about the design and helping 

recreate and understand problems identified
– Ensure that nothing gets broken over time
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Running Example – PowerPC Processor

§ Black box view
– Interface to memory (via 

caches)
§ For instruction fetching
§ For data fetching and 

storing

– Interface to I/O devices
§ For data fetching and 

storing
§ Interrupts

– Miscellaneous interface
§ Clocks 
§ Reset
§ …

PowerPC
ProcessorMemory

Instructions

Data

I/O

Clock Reset
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Architectural View
§ RISC (Reduced Instruction Set Computer) processor

– “Small” number of instructions  (~400)
– One simple operation per instruction
– Fixed length instructions (32 bits = 1 word)
– Specific load and store instructions to access memory

§ All other instructions use registers for operands
§ Large register files

– 32 general purpose registers (GPR)
– 32 floating-point registers (FPR) 

§ Used only for floating-point operations
– Several special purpose registers

§ Condition register, link register, status register, etc.
§ Complex memory model

– Multiple level address translation
– Coherency rules
– (not in the scope of the lecture)
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Microarchitectural View 

§ Multi-threaded
§ In-order execution
§ Four instructions wide

– Fetch
– Decode
– Dispatch

§ Four execution units
– B: Branch
– R: Simple Arithmetic
– M: Complex Arithmetic
– S: Load Store

Dispatch
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Extracts from the Verification Plan

1. Check that all pairs of instructions are 
executed correctly together
– Basic architectural requirement
– Appears in most verification plans of processors
– Fulfilling it is not as easy at it seems

2. Check that all forwarding mechanisms 
between pipeline stages are working properly
– Basic microarchitectural requirement
– Source for many bugs in previous designs
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Processor Verification Environment

PowerPC
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Issues in Stimuli Generation

§ How many generators?
§ Level of abstraction
§ Online vs. offline generation
§ Dynamic vs. static generation
§ Test length
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How Many Generators?

§ Distributed generators
– Each interface has its own generator
– Each generator works on its own
– Advantages

§ Simple
§ Easy to reuse

– Disadvantages
§ Hard to reach corner cases in coordinated fashion

PowerPC
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How Many Generators?

§ Single generator
– One generator controls all the interfaces
– Advantages

§ All the interfaces can work together toward a common goal
– Disadvantages

§ Complex 
§ Hard to reuse

PowerPC
Processor

Instr.
D

river

I/O
D

river

Memory Driver

Unified Generator
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How Many Generators?

§ Synchronized generators
– Each interface has its own generator
– The generators share information and synchronize
– Advantages

§ Can reuse each generator separately
§ Can work together towards a common goal

PowerPC
Processor
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river
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Abstraction Level of Generation

DUV

Bit Level 
(no abstraction)

Command & Data
instruction level

Groups of bits

Groups of 
instructions

Groups of 
sequences 

across
time

Designer

SystemProgram or
Algorithmic Level

Sequence Level
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Abstraction Level of Generation

DUV

Bit Level 
(no abstraction)

Command & Data
instruction level

Groups of bits

Groups of 
instructions

Groups of 
sequences 

across
time

Designer

SystemProgram or
Algorithmic Level

Sequence Level

While bit-level representation allows 
us to see how the data exercises 

the carry chain, at a higher level of 
abstraction (looking at the integer 

values) we may not spot this. 
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What Does Abstraction Level Mean?
§ Communication between the user and the 

generator
§ Internal representation and operation level in the 

generator

§ Communication between the generator and the 
driver

§ The level in which the generator generates the stimuli

§ The generator sends information at high level of abstraction
§ The driver translates into bits using the appropriate protocol

§ How the user specifies directives to the generator
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Which Abstraction Level To Choose?
§ Communication between the user (verification engineer) 

and the generator
– Use a level similar to the level used in the verification plan
– In our case (running example) – the sequence level
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Which Abstraction Level To Choose?
§ Communication between the user (verification engineer) 

and the generator
– Use a level similar to the level used in the verification plan
– In our case (running example) – the sequence level

§ Internal representation                                                and 
i.e. the operation level                                                          
in the test generator
– Conflicting requirements

§ Address user requirements (at their level) à high level of abstraction
§ Need sufficient detail à low level of abstraction

– In many cases we use two or more levels for stimuli generation
§ First we build a high-level skeleton of the stimuli based on the user 

requirements
§ Next we add lower-level details
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Which Abstraction Level To Choose?
§ Communication between the user (verification engineer) 

and the generator
– Use a level similar to the level used in the verification plan
– In our case (running example) – the sequence level

§ Internal representation                                                and 
i.e. the operation level                                                          
in the test generator
– Conflicting requirements

§ Address user requirements (at their level) à high level of abstraction
§ Need sufficient detail à low level of abstraction

– In many cases we use two or more levels for stimuli generation
§ First we build a high-level skeleton of the stimuli based on the user 

requirements
§ Next we add lower-level details

§ Communication between the test generator and the driver
– Use the lowest level in which the test generator operates
– Special case – error injection
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Error Injection
§ Error detection and recovery are very important 

mechanisms in hardware designs
– They are also very hard to verify

§ Error injection is usually done at the lowest level of 
abstraction
– The value of a bit (or set of bits) is flipped when they are injected 

into the DUV

§ To allow error injection, the generator needs to operate and 
communicate with the driver at the bit level
– This creates extra burden and unnecessarily increases complexity 

for normal cases
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Error Injection
§ Error detection and recovery are very important 

mechanisms in hardware designs
– They are also very hard to verify

§ Error injection is usually done at the lowest level of 
abstraction
– The value of a bit (or set of bits) is flipped when they are injected 

into the DUV

§ To allow error injection, the test generator needs to operate 
and communicate with the driver at the bit level
– This creates extra burden and unnecessarily increases complexity 

for normal cases

§ Possible solution – create a separate error injection 
interface between the test generator and driver
– At the low level of the error injection, i.e. directly injecting the error
– At the normal level with instructions on how to inject the error
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Online vs Offline Generation
When to generate stimuli?
§ Offline generation (pre-run):

– The entire stimuli are generated before the simulation
begins

– The generation and simulation can be two separated 
processes

§ Online generation (on-the-fly):
– Stimuli generation during simulation
– The next element is generated when needed by the 

driver
– The generator must be part of the verification 

environment
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Offline Generation
§ Why

– Can separate the test generation from simulation
§ Use external tools, emulation, …

– Can use more complex algorithms for test generation 
§ For example, generate “out of order”, e.g. instruction 

sequences (processors) or action sequences (robotics)
– Offline test generation may be compulsory     Where?

§ Why not
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Offline Generation
§ Why

– Can separate the test generation from simulation
§ Use external tools, emulation, …

– Can use more complex algorithms for test generation 
§ For example, generate “out of order”, e.g. instruction 

sequences (processors) or action sequences (robotics)
– Offline test generation may be compulsory     Where?

§ Why not
– Need to connect the test generation output to the 

verification environment 
– Cannot use information directly from the DUV during 

simulation, nor from the environment 
– Hard to react to unexpected but valid responses from 

the DUV 
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Generating Instructions Out Of Order

§ Verification goal: forward data from M2 to B2
– Branch is dispatched after arithmetic instruction
– Both reach stage 2 together
– To preserve functional correctness,                 

the branch must wait for the                    
arithmetic instruction to complete Dispatch

B1

B2

B3

M1

M2

M3

Data Fetch

Execute

Write Back

Decode

How can we generate a test, i.e. a sequence of instructions, that achieves this goal 
(efficiently and effectively)?
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Generating Instructions Out Of Order

Dispatch

B1

B2

B3

M1

M2

M3

Data Fetch

Execute

Write Back

Decode

Generation Order: Br – Mul – Div – Lw - Add

Lw G10, 60(G21)
Add G7, G9, G13
Mul G1, G2, G3
Div G4, G5, G6

Br 100(G1)1
3
2
4
4

Execution Order: Lw – Add – Mul – Div - Br

§ Verification goal: forward data from M2 to B2
– Branch is dispatched after arithmetic instruction
– Both reach stage 2 together
– To preserve functional correctness,                 

the branch must wait for the                    
arithmetic instruction to complete
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Online Generation
§ Why

– The generator can use information about the state of 
the environment and DUV for improving the quality of 
generation
§ Makes reaching corner cases easier

– The only solution to react to unexpected but valid 
behaviour of the DUV

– Generally small memory footprint

§ Why not
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Online Generation
§ Why

– The generator can use information about the state of 
the environment and DUV for improving the quality of 
generation
§ Makes reaching corner cases easier

– The only solution to react to unexpected but valid 
behaviour of the DUV

– Generally small memory footprint

§ Why not
– Must generate items in order
– Limited complexity
– <any other reasons why not>
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Online Generation
§ Why

– The generator can use information about the state of 
the environment and DUV for improving the quality of 
generation
§ Makes reaching corner cases easier

– The only solution to react to unexpected but valid 
behaviour of the DUV

– Generally small memory footprint

§ Why not
– Must generate items in order
– Limited complexity
– Performance: online test generation slows down 

simulation
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Mixing online and offline Generation

§ Online and offline generation can be 
mixed within a verification environment

§ Which designs would benefit from this 
combination?
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Mixing online and offline Generation

§ Online and offline generation can be 
mixed within a verification environment

§ Which designs would benefit from this 
combination?

Processor verification: instruction sequences 
are generated from high-level programs 
through compilation, i.e. offline using an 

external tool – the compiler, but the interrupts 
are generated online, when the processor is in 

an interesting state. J
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Dynamic vs. Static Generation
§ In static generation the test generator is not aware 

of the state of the DUV and the environment
– Generation decisions are based entirely on the internal 

state of the test generator
§ Alternatively, we can take a less restrictive view on 

static generation: the test generator is aware of 
what and when it is allowed to generate 

§ In calc1 the generator knows not to generate a new command 
before a response for the previous command has been received

§ In dynamic generation the test generator is fully 
aware of the state of the DUV and the environment 
and generates based on this information
– The test generator can react to interesting states             

in the DUV 



35

Dynamic Instruction Generation Example

§ Verification goal: forward data from M2 to B2
– The generator identifies the potential

forwarding condition “on the fly”, i.e. when it 
spots the mul instruction

– It generates instruction(s)  
that will block the br(anch)
from dispatching with the
mul instruction

– It generates a br instruction 
that uses the same register                                 
as the destination of the mul
instruction to create the                      
dependency that triggers forwarding

Dispatch

B1

B2

B3

M1

M2

M3

Data Fetch

Execute

Write Back

Decode

Next instruction

mul

add

?
?

div
br
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Does This Example Work?
§ This example may not work!
§ Main reason:

– There is a distance (in terms of time) from the 
entry point of instructions into the processor to 
the dispatch queue. This distance creates 
delays.

– Many bad things can happen while the br
instruction travels this distance
§ For example, exceptions that flush the pipes

– By the time the br instruction reaches the 
relevant stage in the pipe to trigger forwarding, 
the interesting condition may already have gone



37

Dynamic vs. Static Generation

§ Dynamic test generation is based on reaction
while static test generation is based on planning

§ In general, reaction is harder than planning
– Time is a factor
– Unexpected events can get in the way

§ Most generators use dynamic features lightly
– Observe and react to shallow or stable states of the 

DUV
§ For example, architectural registers or the state of a fifo, e.g. 

it being almost full.



38

Offline Dynamic Generation

§ Dynamic and static generation should not 
be confused with online and offline 
generation

§ An offline generator can use dynamic 
generation by using a reference model
that provides information about the state of 
the DUV
– The level and accuracy of the information depends on 

the abstraction level and accuracy of the reference 
model
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Test Length

§ Two extreme approaches for selecting the test 
length

§ Use short tests
– The shortest tests that can fulfill the requirement in 

the verification plan
– For the instruction pairs requirement use tests with 

just two instructions J
§ Use long tests

– Combine many requirements in a single test
– Wrap a test with initial and end sequences
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Why Short Tests?

§ Easy to create
§ Easy to debug
§ Easy to maintain
§ Short time to simulate each



Short tests vs. long tests
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Why Long Tests?
§ Need fewer tests
§ Less time to simulate

– Overall less time as we do not need to repeat the 
initialization sequence for every test ;)
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Why Long Tests?
§ Need fewer tests
§ Less time to simulate

– Overall less time as we do not need to repeat the 
initialization sequence for every test ;)

§ Test is not at or near the initial state most of the 
time, which is the case when using short tests

§ Go along less traveled paths, which results in a 
greater variety in terms of exercising the logic

§ Reach verification targets in different ways
– Often leads to reaching the targets in unexpected 

ways
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Summary of Part I
Part I: Issues in stimuli generation

– How many generators?
– Level of abstraction
– Online vs. offline generation
– Dynamic vs. static generation
– Test length

Part II: Test Automation 
– Randomness
– Constrained pseudo-random stimulus 

generation


