
COMS30026 Design Verification

Stimuli Generation
(Part II)

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

Outline
Motivation: Advanced Stimuli Generation

– Running example: PowerPC processor (repeated from Part I)

Part I: Issues in stimuli generation
– How many generators?
– Level of abstraction
– Online vs. offline generation
– Dynamic vs. static generation
– Test length

Part II: Test Automation
– Randomness
– Constrained pseudo-random stimulus generation

3

Running Example – PowerPC Processor

§ Black box view
– Interface to memory (via

caches)
§ For instruction fetching
§ For data fetching and

storing

– Interface to I/O devices
§ For data fetching and

storing
§ Interrupts

– Miscellaneous interface
§ Clocks
§ Reset
§ …

PowerPC
ProcessorMemory

Instructions

Data

I/O

Clock Reset

4

Architectural View
§ RISC (Reduced Instruction Set Computer) processor

– “Small” number of instructions (~400)
– One simple operation per instruction
– Fixed length instructions (32 bits = 1 word)
– Specific load and store instructions to access memory

§ All other instructions use registers for operands
§ Large register files

– 32 general purpose registers (GPR)
– 32 floating-point registers (FPR)

§ Used only for floating-point operations
– Several special purpose registers

§ Condition register, link register, status register, etc.
§ Complex memory model

– Multiple level address translation
– Coherency rules
– (not in the scope of the lecture)

5

Microarchitectural View

§ Multi-threaded
§ In-order execution
§ Four instructions wide

– Fetch
– Decode
– Dispatch

§ Four execution units
– B: Branch
– R: Simple Arithmetic
– M: Complex Arithmetic
– S: Load Store

Dispatch

B1

B2

B3

R1

R2

R3

M1

M2

M3

S1

S2

S3S4f S4b

Data Fetch

Execute

Write Back

Decode

Fetch

I Cache

D Cache

6

Extracts from the Verification Plan

1. Check that all pairs of instructions are
executed correctly together
– Basic architectural requirement
– Appears in most verification plans of processors
– Fulfilling it is not as easy at it seems

2. Check that all forwarding mechanisms
between pipeline stages are working properly
– Basic microarchitectural requirement
– Source for many bugs in previous designs

Test Automation
From random test generation

to constrained pseudo-random test
generation

8

Randomness - Motivation
§ The first time we press the button a test is

created
§ What happens when we press the button a

second time?
– The same test appears
è our stimuli generator is deterministic

Stimuli
Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…

Test
Specification

9

Why Deterministic?

§ Useful before random environment is ready
– It is much easier to create a driver that reads

deterministic tests and injects them into the DUV
§ Previously developed test suite

– For example, architectural compliance suite
§ Known quality
§ Avoid (potentially) extremely long generation

times

(Do not confuse deterministic with manual!)

10

Why Not Deterministic?

§ A given test can be used only once
– It is useless unless something has changed in the

§ DUV
§ Environment

§ The test specification has limited reuse capabilities

§ Modern verification methodology employs many
workstations that simulate many test cases
– We cannot afford to provide different test specifications for each

test case to be simulated

11

Why Not Deterministic?

§ A given test can be used only once
– It is useless unless something has changed in the

§ DUV
§ Environment

§ The test specification has limited reuse capabilities

§ Modern verification methodology employs many
workstations that simulate many test cases
– We cannot afford to provide different test specifications for each

test case to be simulated

§ What about hitting and exposing all the problems we did
not think about in the verification plan?

12

Random Stimuli Generation

Stimuli
Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…
Test # 2

Fdiv F1, F2, F3
Lw G6, (10)G9

…

Repeat
100 times

Test
Specification

Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

…

The generated tests are
different !

13

Purely Random Generation
§ The opposite end of the spectrum to deterministic

generation
§ The generator generates random sequences of

‘0’s and ‘1’s that are packed into instructions
§ Theoretically, this might seem like the ideal

solution
– Avoid blind spots in the verification plan

§ BUT practically,
not very useful for verification
– Most generated test cases are invalid
– Most valid test cases are not

interesting

14

Side Note – Pseudo Random
§ When using random number generators, “random”

decisions are controlled by a seed
– Given the value of the seed, random decisions are

deterministic
§ Pseudo random is essential in verification because

of the need to reproduce specific tests
– For example, to reproduce bugs

§ Essential requirement for Pseudo Random Test
Generator:
– Need (at least) repeatability!

§ Achieved by using the same seed to seed the generator.

15

Constrained Random Generation

§ The stimuli generator is
constrained to generate
– Valid tests
– Tests that meet the user

requirements
§ There are many (infinite

number of) tests that fulfill
these constraints

§ The generator can choose any
such test

16

Example: Instruction Pair Generation

§ The test specification requires a test that
contains an add instruction followed by an
xor instruction
– Comes from the first extract of our verification

plan
§ The test should look like
§ Everything else can be

randomized

add_xor_test

Start:
…
Add ??, ??, ??
Xor ??, ??, ??
…

17

Random Decisions for add_xor_test

§ Registers of add instruction
§ Data of add instruction
§ Registers of xor instruction
§ Data of xor instruction
... but also
§ Prelude sequence
§ Epilogue sequence
§ Start address of the program
§ Processor operation mode
§ Behavior of caches, I/O, …
§ …

add_xor_test

Start:
…
Add ??, ??, ??
Xor ??, ??, ??
…

18

How To Make Random Decisions
§ Purely random decisions

– Most tests will be invalid
§ Constrained random decisions

– Limit random decisions to those that lead to
valid tests

– Choose uniformly among valid tests
– Result

§ Generated tests are valid
§ Most random decisions are not interesting
è Small gain in test quality

§ “Smart” constrained random decisions
– Bias decisions toward interesting cases
– Can lead to significant improvement in test

quality

19

“Smart” Decisions for add_xor_test
§ Data of add instruction

– Result = 0
– Overflow
– Long sequences of ‘1’s

(long carry chains)
§ Registers of add instruction

– special registers, e.g. G0 for
PowerPC

§ Registers of xor instruction
– Same registers as used for add

instruction to create
dependencies

§ Start address of the program
– Page 0
– Start of page
– Near end of page

add_xor_test

Start:
…
Add ??, ??, ??
Xor ??, ??, ??
…

20

“Smart” Decisions for add_xor_test
§ Data of add instruction

– Result = 0
– Overflow
– Long sequences of ‘1’s

(long carry chains)
§ Registers of add instruction

– special registers, e.g. G0 for
PowerPC

§ Registers of xor instruction
– Same registers as used for add

instruction to create data
dependencies

§ Start address of the program
– Page 0
– Start of page
– Near end of page

add R1 ß R2 + R3
load Rx ß 1000 (Ry)
???? ß ??, Rz
mult Rz ß R6 * R7

Quality:
sum zero

Validity:
x, y

User request:
same register

These requirements
can be expressed
as constraints.

21

§ These decisions usually represent generic
knowledge of what is interesting in verification
Examples:

§ Add with result 0 is interesting in all addition operations
§ Interdependency between registers is interesting in all

processors
§ G0 is an interesting operand in all PowerPC processors

§ This collection of knowledge is often called
“Testing Knowledge”

§ The testing knowledge is usually incorporated in
the generation environment
– The generation tool you buy
– The generator / driver you develop

Smart Decisions

22

Using Testing Knowledge
§ Ideally, the testing knowledge can be applied

automatically during stimuli generation
§ The generator biases random decisions towards

interesting scenarios using the testing knowledge
– Other cases are not shut-down completely so that test

generation can reach cases we never thought about.

§ Stimuli generators that use testing knowledge are
often called “biased random stimuli generators”

§ Users can change the bias to reach verification
goals

23

All Instruction Pairs Generation
§ With a biased random stimuli generator we can

generate tests that cover all the specific items of the
all instruction pairs extract from the verification plan

§ Every activation of the test specification will produce a
new high-quality test suite

For all inst I {
For all inst J {

Generate prelude
Generate I
Generate J
Generate epilogue

}
}

Stimuli
Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

… Test # 2

Fdiv F1, F2, F3
Lw G6, (10)G9

…
Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

…

§ The same approach cannot work for the
forwarding path verification requirement

2. Check that all forwarding mechanisms
between pipeline stages are working properly
– Basic microarchitectural requirement
– Source for many bugs in previous designs

Why?

25

Abstraction level mismatch
§ The same approach does not work for the

forwarding path verification requirement
– There is a difference between the language of the test

and the language of the verification requirement
§ The test language is instructions, registers, memory

– This is what we can influence

§ The requirement language (i.e. scenario in the verification plan)
is based on microarchitectural events, e.g. control signals (flags)
for the forwarding logic

– This is our target wrt the verification plan and possibly functional coverage

§ Three possible solutions
– Manual translation
– Automatic translation
– “Loose” generation

26

Manual Translation

§ The user provides a description of an instruction
sequence that creates the event
– For example, mul followed by div followed by br,

where br uses the same register as the target of mul
§ The generator randomly fills in missing details

– For example, registers and data of div

§ Suffers from all the disadvantages of manual
test creation
– Labor intensive
– Error prone
– Hard to maintain

27

Automatic Generation
§ The generator is aware of the microarchitecture

of the processor and knows how to translate a
microarchitectural verification requirement into a
sequence of instructions
– Such generators are often called “Deep Knowledge”

test generators
§ Advantages

– Generated tests cover the requested event with high
probability

§ Disadvantages
– High development cost
– Potentially long generation time
– Sensitive to changes in the design

è attract high maintenance costs

28

“Loose” Generation
We exploit the power of massive

generation:
§ Use the “normal” test vocabulary to bias the

generated tests toward tests that improve the
probability of hitting the requested event
– Increase probability of complex arithmetic and branch

instructions
– Increase probability of read after write dependencies

§ Reduce the number of registers available

§ How do we know whether this was successful, i.e.
whether the desired events have been created?
– Coverage is used to determine success

§ In practice, this is an iterative process

29

Random Test
Program Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…

Test # 2

Fdiv F1, F2, F3
Lw G6, (10)G9

…

Repeat
100 times

Test
Specification

Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

…
CSP Engine

TG Engine

1. Everything included

Putting It All Together:
Building a Random Test Program Generator - I

CSP = Constraint
Satisfaction Problem
– a constraint solver

Testing
Knoweldge

validity

Constrain to get
valid tests.

Then bias to get
interesting tests.

30

Random Test
Program Generator

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…

Test # 2

Fdiv F1, F2, F3
Lw G6, (10)G9

…

Repeat
100 times

Test
Specification

Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

…
CSP Engine

TG Engine

2. External CSP Engine

Testing
Knoweldge

validity

Putting It All Together:
Building a Random Test Program Generator - II

31

Processor Model

Putting It All Together:
Building a Random Test Program Generator - III

Test # 1

Add G1, G2, G3
Mul G6, G9, G11

…

Test # 2

Fdiv F1, F2, F3
Lw G6, (10)G9

…

Repeat
100 times

Test
Specification

Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

…
CSP Engine

Random Test
Program Generator

3. Model-based test generator

Testing
Knowledge

validity

32

Model-based Test Generator
Three main layers:
§ General purpose CSP engine (solver)

– May be specific for stimuli generation, but can be shared among
various tools

§ Processor model
– Description of a specific processor

§ Instruction set, registers, memory model, etc.
– Testing knowledge specific to the processor

§ Processor test generation engine
– Knows about the concept, vocabulary of processors
– Generic testing knowledge of processors
– Can translate the user request, processor model, and testing

knowledge into a CSP
– Is capable of turning the solution to the CSP into

a test program

33

Summary: Stimuli Generation
§ Generated stimuli need to be

– Valid
§ NOTE: Valid is not necessarily legal

– Interesting
§ Improve coverage
§ Reach corner cases
§ Find bugs

– Meet specific user requirements from the
verification plan

§ Part I: Issues in stimuli generation
§ Part II: From random test generation to

constrained pseudo-random test generation

Homework challenge on test generation on next slide J

34

REVISION: Main Principles of Test Generation
Mainly Biased Pseudo
Random (i.e. created using
bias control)

Mainly Deterministic
(i.e. written for a specific
scenario)

O
nl

in
e

G
en

er
at

io
n

(d
ur

in
g

si
m

)
O

ffl
in

e
G

en
er

at
io

n
(p

rio
r t

o
si

m
)

This slide allows you to test your
knowledge on test generation.

Fill in the quadrants to see whether
you would have got these

combinations right. ;)

35

REVISION: Main Principles of Test Generation

Stimulus generated each
cycle using parameter
biasing to determine that
cycle’s input.
The environment must have
the knowledge of legal and
illegal scenarios.

Single scenario test cases
with some random
generation of peripheral
inputs.
Random generations used
only for inputs not critical
to the test case intent.

Single scenario test.
Usually written by hand
to verify a specific
scenario.
Most often early in the
verification process.

Test case generators using
random parameters to bias
the stimulus.
Architecturally correct
tests are created and then
exercised via simulation.

Mainly Biased Pseudo
Random (i.e. created using
bias control)

Mainly Deterministic
(i.e. written for a specific
scenario)

O
nl

in
e

G
en

er
at

io
n

(d
ur

in
g

si
m

)
O

ffl
in

e
G

en
er

at
io

n
(p

rio
r t

o
si

m
)

