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Outline
§ Introduction to coverage
§ Part I: Coverage Types

– Code coverage models
– (Structural coverage models)

§ Part II: Coverage Types (continued)
– Functional coverage models

§ Part III: Coverage Analysis
§ Previously: Verification Tools

– Coverage is part of the Verification Tools.
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Functional Coverage
§ It is important to cover the functionality of the DUV.

– Most functional requirements can’t easily be mapped into lines of code!

§ Functional coverage models are designed to assure 
that various aspects of the functionality of the design are 
verified properly, they link the requirements/specification 
with the implementation

§ Functional coverage models are specific to a given 
design or family of designs

§ Models cover
– The inputs and the outputs
– Internal states or microarchitectural features
– Scenarios 
– Parallel properties
– Bug Models
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Functional Coverage Model Types
1. Discrete set of coverage tasks

– Set of unrelated or loosely related coverage tasks 
often derived from the requirements/specification

– Often used for corner cases
§ Driving data when a FIFO is full
§ Reading from an empty FIFO

– In many cases, there is a close link between 
functional coverage tasks and assertions 
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Functional Coverage Model Types
1. Discrete set of coverage tasks

– Set of unrelated or loosely related coverage tasks 
often derived from the requirements/specification

– Often used for corner cases
§ Driving data when a FIFO is full
§ Reading from an empty FIFO

– In many cases, there is a close link between 
functional coverage tasks and assertions 

2. Structured coverage models
– The coverage tasks are defined in a structure that 

defines relations between the coverage tasks
§ Allow definition of similarity and distance between tasks
§ Most commonly used model types

– Cross-product 
– Trees
– Hybrid structures
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Cross-Product Coverage Model
[O Lachish, E Marcus, S Ur and A Ziv. Hole Analysis for Functional Coverage Data. In 

proceedings of the 2002 Design Automation Conference (DAC), June 10-14, 2002, New 
Orleans, Louisiana, USA.]

A cross-product coverage model is 
composed of the following parts:

1. A semantic description of the model (story)
2. A list of the attributes mentioned in the story
3. A set of all the possible values for each 

attribute (the attribute value domains)
4. A list of restrictions on the legal combinations 

in the cross-product of attribute values
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Example: Cross-Product Coverage Model 
Design: switch/cache unit
[G Nativ, S Mittermaier, S Ur and A Ziv. Cost Evaluation of Coverage Directed Test Generation 

for the IBM Mainframe. In Proceedings of the 2001 International Test Conference, pages 
793-802, October 2001.]
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Switch/Cache Unit
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Example: Cross-Product Coverage Model 

Verification plan: Interactions of core processor unit 
command-response sequences can create complex and 
potentially unexpected conditions causing contention within 
the pipes in the switch/cache unit when many core processors
(CPs) are active. All conditions must be tested to gain 
confidence in design correctness.
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Example: Cross-Product Coverage Model 

Verification plan: Interactions of core processor unit 
command-response sequences can create complex and 
potentially unexpected conditions causing contention within 
the pipes in the switch/cache unit when many core processors
(CPs) are active. All conditions must be tested to gain 
confidence in design correctness.

Attributes relevant to command-
response events:

§ Commands - CPs to switch/cache [31]
§ Responses - switch/cache to CPs [16] 
§ Pipes in each switch/cache [2]
§ CPs in the system [8]
§ (Command generators per CP chip [2])

the story
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Example: Cross-Product Coverage Model 

Verification plan: Interactions of core processor unit 
command-response sequences can create complex and 
potentially unexpected conditions causing contention within 
the pipes in the switch/cache unit when many core processors
(CPs) are active. All conditions must be tested to gain 
confidence in design correctness.

Attributes relevant to command-
response events:

§ Commands - CPs to switch/cache [31]
§ Responses - switch/cache to CPs [16] 
§ Pipes in each switch/cache [2]
§ CPs in the system [8]
§ (Command generators per CP chip [2])
How big is the coverage space, i.e. 

how many coverage tasks?

the story
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Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally, 

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes: 

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

How does such a 
coverage task look like?
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Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally, 

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes: 

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0)
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Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally, 

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes: 

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)
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Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally, 

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes: 
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Are all of these tasks reachable/legal?
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Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally, 

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes: 

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?
§ Restrictions on the coverage model are:

– limited number of possible responses for each command, i.e. not all the 
16 responses are valid for each command

– unimplemented command/response combinations
– some commands are only executed in pipe 1

§ After applying restrictions, there are 1968 legal coverage tasks left.
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Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally, 

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes: 

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?
§ Restrictions on the coverage model are:

– limited number of possible responses for each command, i.e. not all the 
16 responses are valid for each command

– unimplemented command/response combinations
– some commands are only executed in pipe 1

§ After applying restrictions, there are 1968 legal coverage tasks left.
Make sure you identify & apply restrictions before you start!
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Defining the Legal and Interesting Spaces

In Practice:
§ Boundaries between legal and illegal coverage 

spaces are often not well understood
§ The design and verification team create initial 

spaces based on their understanding of the 
design

§ Coverage feedback is used to modify the  
definition of the coverage spaces

§ Sub-models are used to economically check and 
refine the coverage spaces
– Easy to define as these are sub-crosses!

§ Interesting spaces tend to change often due to a 
shift in focus in the verification process
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Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space
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Legal Spaces Are Self-correcting
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Cross-Product Coverage more formally
§ Functional cross-product coverage models can be 

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the 

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1
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Cross-Product Coverage more formally
§ Functional cross-product coverage models can be 

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the 

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

§ Let |Dk| = dk denote the size of domain Dk.
§ The functional coverage space Cm contains

|Cm| = |D0| * … * |Dm-1| = d distinct coverage points p0; 
…; pd-1.
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Cross-Product Coverage more formally
§ Functional cross-product coverage models can be 

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the 

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

§ Let |Dk| = dk denote the size of domain Dk.
§ The functional coverage space Cm contains

|Cm| = |D0| * … * |Dm-1| = d distinct coverage points p0; 
…; pd-1.

§ A coverage point pi with i ∈ {0; …;d -1} is characterized 
by an m-tuple of values
pi = (v0; …;vm-1), where pi [k] = vk and each vk ∈ Dk, 
for k ∈ {0; …;m-1}.
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Cross-Product Coverage more formally
§ Functional cross-product coverage models can be 

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the 

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

§ Let |Dk| = dk denote the size of domain Dk.
§ The functional coverage space Cm contains

|Cm| = |D0| * … * |Dm-1| = d distinct coverage points p0; 
…; pd-1.

§ A coverage point pi with i ∈ {0; …;d -1} is characterized 
by an m-tuple of values
pi = (v0; …;vm-1), where pi [k] = vk and each vk ∈ Dk, 
for k ∈ {0; …;m-1}.

Formalization facilitates automation of coverage 
analysis e.g. identification of coverage holes.
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Coverage Terminology

§ cov·er·age model n. 1. A set of legal and interesting 
coverage points in the coverage space.

§ cov·er·age point/task n. 1. A point within a multi-
dimensional coverage space. 2. An event of interest that 
can be observed during simulation.
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Coverage Terminology

§ cov·er·age model n. 1. A set of legal and interesting 
coverage points in the coverage space.

§ cov·er·age point/task n. 1. A point within a multi-
dimensional coverage space. 2. An event of interest that 
can be observed during simulation.

Destination

Length
Metrics

Coverage Space

Read
Memory
Len = 8

Coverage Point

Type (RD, WR)

Transaction 
Coverage 

Model
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Cross-Product Models In e
Verification Languages such 

as e support cross-product 
coverage models:

§ The story is hidden in the 
event

§ The attributes and their 
values are defined in the 
coverage items

§ The coverage space can be 
constrained using the illegal
and ignore constructs
– Restrictions can be defined on 

the coverage items and the 
cross itself

struct instruction {
opcode: [NOP, ADD, SUB, SHL, 

SHR, AND, OR, XOR] (bits:3);
!response : uint (bits:2);

event instruction_complete;

cover instruction_complete is {
item opcode;
item response;
cross opcode, response

using 
ignore = (opcode == NOP);

};
};
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Cross-Product Models In e
Verification Languages such 

as e support cross-product 
coverage models:

§ The story is hidden in the 
event

§ The attributes and their 
values are defined in the 
coverage items

§ The coverage space can be 
constrained using the illegal
and ignore constructs
– Restrictions can be defined on 

the coverage items and the 
cross itself

struct instruction {
opcode: [NOP, ADD, SUB, SHL, 

SHR, AND, OR, XOR] (bits:3);
response : uint (bits:2);

event stimulus;

cover stimulus is {
item opcode;
item response;
cross opcode, response

using 
ignore = (opcode == NOP);

};
};
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New: Situation Coverage

Alexander, Rob; Hawkins, Heather Rebecca; Rae, Andrew John
Situation coverage – a coverage criterion for testing autonomous robots.
Department of Computer Science, University of York, 2015. 21 pages.



PUTTING IT ALL TOGETHER
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Summary: Functional Coverage
Determines whether the functionality of the 

DUV has been exercised (and so verified).
§ Functional coverage models are user-defined.

– The story is driven by the specification and the verification plan.
– Defining them is a skill. It needs (lots of) experience!
– Focus on control signals. WHY?
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§ Functional coverage models are user-defined.

– The story is driven by the specification and the verification plan.
– Defining them is a skill. It needs (lots of) experience!
– Focus on control signals. WHY?

§ Strengths:
– Highly expressive, can capture cross-correlation, multi-cycle 

scenarios and sequences over time.
– Can identify coverage holes by crossing existing items.
– Results are easy to interpret.
– Gives an objective measure of progress against verification plan.
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Summary: Functional Coverage
Determines whether the functionality of the 

DUV has been exercised (and so verified).
§ Functional coverage models are user-defined.

– The story is driven by the specification and the verification plan.
– Defining them is a skill. It needs (lots of) experience!
– Focus on control signals. WHY?

§ Strengths:
– Highly expressive, can capture cross-correlation, multi-cycle 

scenarios and sequences over time.
– Can identify coverage holes by crossing existing items.
– Results are easy to interpret.
– Gives an objective measure of progress against verification plan.

§ Weaknesses:
– Engineering effort is required and a lot of expertise to construct 

the coverage model.
– Only as good as the coverage model captures the functionality.
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Summary: Code Coverage
Determines whether all the implementation 

has been exercised (and therefore verified).
§ Models are implicitly defined by the source code.

– Code coverage is implementation driven. 
– statement, path, expression, toggle, etc.
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Summary: Code Coverage
Determines whether all the implementation 

has been exercised (and therefore verified).
§ Models are implicitly defined by the source code.

– Code coverage is implementation driven. 
– statement, path, expression, toggle, etc.

§ Strengths:
– Reveals unexercised parts of design.
– May reveal gaps in functional verification plan.
– No manual effort is required to implement the metrics. (Comes for 

free!)
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Summary: Code Coverage
Determines whether all the implementation 

has been exercised (and therefore verified).
§ Models are implicitly defined by the source code.

– Code coverage is implementation driven. 
– statement, path, expression, toggle, etc.

§ Strengths:
– Reveals unexercised parts of design.
– May reveal gaps in functional verification plan.
– No manual effort is required to implement the metrics. (Comes for 

free!)
§ Weaknesses:

– No cross correlations.
– Can’t see multi-cycle/concurrent scenarios.
– Manual effort required to interpret results.
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Conclusions on Coverage Types

We need both code and functional coverage
Functional 
Coverage

Code 
Coverage

Interpretation

Low Low There is verification work to do.
Low High Multi-cycle scenarios, corner cases, cross-correlations 

still to be covered.
High Low Verification plan and/or functional coverage metrics 

inadequate.
Check for “dead” code.

High High High confidence in quality. 

§ Coverage models complement each other!
§ No single coverage model is adequate on its own.


