
COMS30026 Design Verification

Coverage
Part II: Functional Coverage

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

Outline
§ Introduction to coverage
§ Part I: Coverage Types

– Code coverage models
– (Structural coverage models)

§ Part II: Coverage Types (continued)
– Functional coverage models

§ Part III: Coverage Analysis
§ Previously: Verification Tools

– Coverage is part of the Verification Tools.

3

Functional Coverage
§ It is important to cover the functionality of the DUV.

– Most functional requirements can’t easily be mapped into lines of code!

§ Functional coverage models are designed to assure
that various aspects of the functionality of the design are
verified properly, they link the requirements/specification
with the implementation

§ Functional coverage models are specific to a given
design or family of designs

§ Models cover
– The inputs and the outputs
– Internal states or microarchitectural features
– Scenarios
– Parallel properties
– Bug Models

4

Functional Coverage Model Types
1. Discrete set of coverage tasks

– Set of unrelated or loosely related coverage tasks
often derived from the requirements/specification

– Often used for corner cases
§ Driving data when a FIFO is full
§ Reading from an empty FIFO

– In many cases, there is a close link between
functional coverage tasks and assertions

5

Functional Coverage Model Types
1. Discrete set of coverage tasks

– Set of unrelated or loosely related coverage tasks
often derived from the requirements/specification

– Often used for corner cases
§ Driving data when a FIFO is full
§ Reading from an empty FIFO

– In many cases, there is a close link between
functional coverage tasks and assertions

2. Structured coverage models
– The coverage tasks are defined in a structure that

defines relations between the coverage tasks
§ Allow definition of similarity and distance between tasks
§ Most commonly used model types

– Cross-product
– Trees
– Hybrid structures

6

Cross-Product Coverage Model
[O Lachish, E Marcus, S Ur and A Ziv. Hole Analysis for Functional Coverage Data. In

proceedings of the 2002 Design Automation Conference (DAC), June 10-14, 2002, New
Orleans, Louisiana, USA.]

A cross-product coverage model is
composed of the following parts:

1. A semantic description of the model (story)
2. A list of the attributes mentioned in the story
3. A set of all the possible values for each

attribute (the attribute value domains)
4. A list of restrictions on the legal combinations

in the cross-product of attribute values

7

Example: Cross-Product Coverage Model
Design: switch/cache unit
[G Nativ, S Mittermaier, S Ur and A Ziv. Cost Evaluation of Coverage Directed Test Generation

for the IBM Mainframe. In Proceedings of the 2001 International Test Conference, pages
793-802, October 2001.]

8

Switch/Cache Unit

9

Example: Cross-Product Coverage Model

Verification plan: Interactions of core processor unit
command-response sequences can create complex and
potentially unexpected conditions causing contention within
the pipes in the switch/cache unit when many core processors
(CPs) are active. All conditions must be tested to gain
confidence in design correctness.

10

Example: Cross-Product Coverage Model

Verification plan: Interactions of core processor unit
command-response sequences can create complex and
potentially unexpected conditions causing contention within
the pipes in the switch/cache unit when many core processors
(CPs) are active. All conditions must be tested to gain
confidence in design correctness.

Attributes relevant to command-
response events:

§ Commands - CPs to switch/cache [31]
§ Responses - switch/cache to CPs [16]
§ Pipes in each switch/cache [2]
§ CPs in the system [8]
§ (Command generators per CP chip [2])

the story

11

Example: Cross-Product Coverage Model

Verification plan: Interactions of core processor unit
command-response sequences can create complex and
potentially unexpected conditions causing contention within
the pipes in the switch/cache unit when many core processors
(CPs) are active. All conditions must be tested to gain
confidence in design correctness.

Attributes relevant to command-
response events:

§ Commands - CPs to switch/cache [31]
§ Responses - switch/cache to CPs [16]
§ Pipes in each switch/cache [2]
§ CPs in the system [8]
§ (Command generators per CP chip [2])
How big is the coverage space, i.e.

how many coverage tasks?

the story

12

Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally,

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes:

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

How does such a
coverage task look like?

13

Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally,

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes:

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0)

14

Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally,

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes:

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)

15

Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally,

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes:

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?

16

Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally,

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes:

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?
§ Restrictions on the coverage model are:

– limited number of possible responses for each command, i.e. not all the
16 responses are valid for each command

– unimplemented command/response combinations
– some commands are only executed in pipe 1

§ After applying restrictions, there are 1968 legal coverage tasks left.

17

Example: Size of Coverage Space
Size of coverage space:
§ Coverage space is formed by cross-product (or, more formally,

the Cartesian product) over all attribute value domains.
§ Size of cross-product is product of domain sizes:

– 31x16x2x8x2 = 15872
§ Hence, there are 15872 coverage tasks.

Example coverage task:
(20,01,1,5,0) = (Command=20, Response=01, Pipe=1, CP=5, CG=0)

Are all of these tasks reachable/legal?
§ Restrictions on the coverage model are:

– limited number of possible responses for each command, i.e. not all the
16 responses are valid for each command

– unimplemented command/response combinations
– some commands are only executed in pipe 1

§ After applying restrictions, there are 1968 legal coverage tasks left.
Make sure you identify & apply restrictions before you start!

18

Defining the Legal and Interesting Spaces

In Practice:
§ Boundaries between legal and illegal coverage

spaces are often not well understood
§ The design and verification team create initial

spaces based on their understanding of the
design

§ Coverage feedback is used to modify the
definition of the coverage spaces

§ Sub-models are used to economically check and
refine the coverage spaces
– Easy to define as these are sub-crosses!

§ Interesting spaces tend to change often due to a
shift in focus in the verification process

19

Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space

20

Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space

21

Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space

22

Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space

23

Legal Spaces Are Self-correcting

Coverage spaceIllegal space

Legal space

Covered space

24

Cross-Product Coverage more formally
§ Functional cross-product coverage models can be

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

25

Cross-Product Coverage more formally
§ Functional cross-product coverage models can be

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

§ Let |Dk| = dk denote the size of domain Dk.
§ The functional coverage space Cm contains

|Cm| = |D0| * … * |Dm-1| = d distinct coverage points p0;
…; pd-1.

26

Cross-Product Coverage more formally
§ Functional cross-product coverage models can be

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

§ Let |Dk| = dk denote the size of domain Dk.
§ The functional coverage space Cm contains

|Cm| = |D0| * … * |Dm-1| = d distinct coverage points p0;
…; pd-1.

§ A coverage point pi with i ∈ {0; …;d -1} is characterized
by an m-tuple of values
pi = (v0; …;vm-1), where pi [k] = vk and each vk ∈ Dk,
for k ∈ {0; …;m-1}.

27

Cross-Product Coverage more formally
§ Functional cross-product coverage models can be

defined using multi-dimensional coverage spaces.
§ A functional coverage space Cm is defined as the

Cartesian product over m signal domains D0; …;Dm-1.
– Cm = D0 X … X Dm-1

§ Let |Dk| = dk denote the size of domain Dk.
§ The functional coverage space Cm contains

|Cm| = |D0| * … * |Dm-1| = d distinct coverage points p0;
…; pd-1.

§ A coverage point pi with i ∈ {0; …;d -1} is characterized
by an m-tuple of values
pi = (v0; …;vm-1), where pi [k] = vk and each vk ∈ Dk,
for k ∈ {0; …;m-1}.

Formalization facilitates automation of coverage
analysis e.g. identification of coverage holes.

28

Coverage Terminology

§ cov·er·age model n. 1. A set of legal and interesting
coverage points in the coverage space.

§ cov·er·age point/task n. 1. A point within a multi-
dimensional coverage space. 2. An event of interest that
can be observed during simulation.

29

Coverage Terminology

§ cov·er·age model n. 1. A set of legal and interesting
coverage points in the coverage space.

§ cov·er·age point/task n. 1. A point within a multi-
dimensional coverage space. 2. An event of interest that
can be observed during simulation.

Destination

Length
Metrics

Coverage Space

Read
Memory
Len = 8

Coverage Point

Type (RD, WR)

Transaction
Coverage

Model

30

Cross-Product Models In e
Verification Languages such

as e support cross-product
coverage models:

§ The story is hidden in the
event

§ The attributes and their
values are defined in the
coverage items

§ The coverage space can be
constrained using the illegal
and ignore constructs
– Restrictions can be defined on

the coverage items and the
cross itself

struct instruction {
opcode: [NOP, ADD, SUB, SHL,

SHR, AND, OR, XOR] (bits:3);
!response : uint (bits:2);

event instruction_complete;

cover instruction_complete is {
item opcode;
item response;
cross opcode, response

using
ignore = (opcode == NOP);

};
};

31

Cross-Product Models In e
Verification Languages such

as e support cross-product
coverage models:

§ The story is hidden in the
event

§ The attributes and their
values are defined in the
coverage items

§ The coverage space can be
constrained using the illegal
and ignore constructs
– Restrictions can be defined on

the coverage items and the
cross itself

struct instruction {
opcode: [NOP, ADD, SUB, SHL,

SHR, AND, OR, XOR] (bits:3);
response : uint (bits:2);

event stimulus;

cover stimulus is {
item opcode;
item response;
cross opcode, response

using
ignore = (opcode == NOP);

};
};

32

New: Situation Coverage

Alexander, Rob; Hawkins, Heather Rebecca; Rae, Andrew John
Situation coverage – a coverage criterion for testing autonomous robots.
Department of Computer Science, University of York, 2015. 21 pages.

PUTTING IT ALL TOGETHER

34

Summary: Functional Coverage
Determines whether the functionality of the

DUV has been exercised (and so verified).
§ Functional coverage models are user-defined.

– The story is driven by the specification and the verification plan.
– Defining them is a skill. It needs (lots of) experience!
– Focus on control signals. WHY?

35

Summary: Functional Coverage
Determines whether the functionality of the

DUV has been exercised (and so verified).
§ Functional coverage models are user-defined.

– The story is driven by the specification and the verification plan.
– Defining them is a skill. It needs (lots of) experience!
– Focus on control signals. WHY?

§ Strengths:
– Highly expressive, can capture cross-correlation, multi-cycle

scenarios and sequences over time.
– Can identify coverage holes by crossing existing items.
– Results are easy to interpret.
– Gives an objective measure of progress against verification plan.

36

Summary: Functional Coverage
Determines whether the functionality of the

DUV has been exercised (and so verified).
§ Functional coverage models are user-defined.

– The story is driven by the specification and the verification plan.
– Defining them is a skill. It needs (lots of) experience!
– Focus on control signals. WHY?

§ Strengths:
– Highly expressive, can capture cross-correlation, multi-cycle

scenarios and sequences over time.
– Can identify coverage holes by crossing existing items.
– Results are easy to interpret.
– Gives an objective measure of progress against verification plan.

§ Weaknesses:
– Engineering effort is required and a lot of expertise to construct

the coverage model.
– Only as good as the coverage model captures the functionality.

37

Summary: Code Coverage
Determines whether all the implementation

has been exercised (and therefore verified).
§ Models are implicitly defined by the source code.

– Code coverage is implementation driven.
– statement, path, expression, toggle, etc.

38

Summary: Code Coverage
Determines whether all the implementation

has been exercised (and therefore verified).
§ Models are implicitly defined by the source code.

– Code coverage is implementation driven.
– statement, path, expression, toggle, etc.

§ Strengths:
– Reveals unexercised parts of design.
– May reveal gaps in functional verification plan.
– No manual effort is required to implement the metrics. (Comes for

free!)

39

Summary: Code Coverage
Determines whether all the implementation

has been exercised (and therefore verified).
§ Models are implicitly defined by the source code.

– Code coverage is implementation driven.
– statement, path, expression, toggle, etc.

§ Strengths:
– Reveals unexercised parts of design.
– May reveal gaps in functional verification plan.
– No manual effort is required to implement the metrics. (Comes for

free!)
§ Weaknesses:

– No cross correlations.
– Can’t see multi-cycle/concurrent scenarios.
– Manual effort required to interpret results.

40

Conclusions on Coverage Types

We need both code and functional coverage
Functional
Coverage

Code
Coverage

Interpretation

Low Low There is verification work to do.
Low High Multi-cycle scenarios, corner cases, cross-correlations

still to be covered.
High Low Verification plan and/or functional coverage metrics

inadequate.
Check for “dead” code.

High High High confidence in quality.

§ Coverage models complement each other!
§ No single coverage model is adequate on its own.

