
COMS30026 Design Verification

Coverage
Part I: Code Coverage

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

Outline
§ Introduction to coverage
§ Part I: Coverage Types

– Code coverage models
– (Structural coverage models)

§ Part II: Coverage Types (continued)
– Functional coverage models

§ Part III: Coverage Analysis

Previously: Verification Tools
– Coverage is part of the Verification Tools.

INTRODUCTION

4

Simulation-based Verification Environment

Test
Plan

Biased-Random
Stimuli

Generator Test

Test

Design
Under Test

Fail
Pass

SimulatorDirectives

Checking,
Assertions

5

Simulation-based Verification Environment

Test
Plan

Coverage
Reports Coverage

Analysis Tool

Coverage
Information

Biased-Random
Stimuli

Generator Test

Test

Design
Under Test

Fail
Pass

SimulatorDirectives

Checking,
Assertions

6

Why coverage?

§ Simulation is based on limited execution
samples
– We cannot run all possible scenarios, but
– we need to know that all (important) areas of the

DUV have been exercised (and thus verified).
§ Solution: Coverage measurement and analysis
§ The main ideas behind coverage

– Features (of the specification and implementation)
are identified

– Coverage models capture these features

7

Coverage can be used to
§ Measure the "quality" of a set of tests

– Coverage gives us an insight into what has not been verified!
– Coverage completeness does not imply functional correctness

of the design! Why?

8

§ Measure the "quality" of a set of tests
– Coverage gives us an insight into what has not been verified!
– Coverage completeness does not imply functional correctness

of the design! Why?

§ Help create regression suites
– Ensure that all parts of the DUV are covered by

regression suite

Coverage can be used to

9

Coverage can be used to
§ Measure the "quality" of a set of tests

– Coverage gives us an insight into what has not been verified!
– Coverage completeness does not imply functional correctness

of the design! Why?

§ Help create regression suites
– Ensure that all parts of the DUV are covered by

regression suite

§ Provide stopping criteria for unit testing
Why “only” for unit testing?

§ Improve understanding of the design

10

Coverage Types

§ Code coverage
§ Structural coverage
§ Functional coverage

§ Other classifications
– Implicit vs. explicit
– Specification vs. implementation

CODE COVERAGE

12

Code Coverage - Basics
§ Coverage models are based on the (HDL)

code
§ Generic models – fit (almost) any

programming language
– Used in both software development and hardware

design

§ Coverage models are syntactic
– Model definition is based on syntax and structure of

the code
– Implicit, implementation-specific coverage models

13

Code Coverage - Scope
§ Code coverage can answer the question:

“Is there a piece of code that has not been exercised?”

14

Code Coverage - Scope
§ Code coverage can answer the question:

“Is there a piece of code that has not been exercised?”
– Method used in software engineering for some time.
– Have you tried gcov?

§ No? Then, now is the right time to try it out. Please
visit https://gcc.gnu.org/onlinedocs/gcc/Gcov.html and
have a go.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

15

Code Coverage - Scope
§ Code coverage can answer the question:

“Is there a piece of code that has not been exercised?”
– Method used in software engineering for some time.
– Have you tried gcov?

§ No? Then, now is the right time to try it out. Please
visit https://gcc.gnu.org/onlinedocs/gcc/Gcov.html and
have a go.

§ Useful for profiling:
– Run coverage on testbench to indicate which areas are executed

most often.
– Gives insights on what to optimize!

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

16

Types of Code Coverage Models

§ Control flow
– Used to determine whether the control flow of

a program has been fully exercised
§ Data flow

– Used to track the flow of data in and between
programs and modules

§ Mutation
– Models that can detect common bugs by

mutating the code and comparing results

17

Control Flow Models
§ Routine (function entry)

– Each function / procedure has been called
§ Function call

– Each function has been called from every possible location
§ Function return

– Each return statement has been executed

18

Control Flow Models
§ Routine (function entry)

– Each function / procedure has been called
§ Function call

– Each function has been called from every possible location
§ Function return

– Each return statement has been executed
§ Statement (block)

– Each statement in the code has been executed
§ Branch/Path

– Each branch in branching statements has been taken
§ if, switch, case, when, …

§ Expression/Condition
– Each input in a Boolean expression (condition) has evaluated to true

and also to false
§ (See further details later on MC/DC coverage)

19

Control Flow Models
§ Routine (function entry)

– Each function / procedure has been called
§ Function call

– Each function has been called from every possible location
§ Function return

– Each return statement has been executed
§ Statement (block)

– Each statement in the code has been executed
§ Branch/Path

– Each branch in branching statements has been taken
§ if, switch, case, when, …

§ Expression/Condition
– Each input in a Boolean expression (condition) has evaluated to true

and also to false
§ (See further details later on MC/DC coverage)

§ Loop
– All possible numbers of iterations in (bounded) loops have been

executed

20

Statement/Block Coverage
Measures which lines (statements) have been executed by

the test suite.
ü if (parity==ODD || parity==EVEN) begin
q parity_bit = compute_parity(data,parity);
end

ü else begin
ü parity_bit = 1’b0;
end

ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);
end

What do we need to do to get statement coverage to 100%?

21

Statement/Block Coverage
Measures which lines (statements) have been executed by

the test suite.
ü if (parity==ODD || parity==EVEN) begin
q parity_bit = compute_parity(data,parity);
end

ü else begin
ü parity_bit = 1’b0;
end

ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);
end

What do we need to do to get statement coverage to 100%?
§ Why has this never occurred?
§ Was it simply forgotten?

22

Statement/Block Coverage
Measures which lines (statements) have been executed by

the test suite.
ü if (parity==ODD || parity==EVEN) begin
q parity_bit = compute_parity(data,parity);
end

ü else begin
ü parity_bit = 1’b0;
end

ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);
end

What do we need to do to get statement coverage to 100%?
§ Why has this never occurred?
§ Was it simply forgotten?
§ Is it a condition that can never occur?

– (Dead code might be “ok”!) WHEN & WHY?

23

Path/Branch Coverage
Measures all possible ways to execute a sequence

of statements.
– Have all branches or execution paths been taken?
– How many execution paths?

ü if (parity==ODD || parity==EVEN) begin
ü parity_bit = compute_parity(data,parity);
end

ü else begin
ü parity_bit = 1’b0;
end

ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);
end

24

Path/Branch Coverage
Measures all possible ways to execute a sequence

of statements.
– Have all branches or execution paths been taken?
– How many execution paths?

ü if (parity==ODD || parity==EVEN) begin
ü parity_bit = compute_parity(data,parity);
end

ü else begin
ü parity_bit = 1’b0;
end

ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);
end
□ □ □ □

Note: 100%
statement coverage
but only 75% path

coverage!

25

Path/Branch Coverage
Measures all possible ways to execute a sequence

of statements.
– Have all branches or execution paths been taken?
– How many execution paths?

ü if (parity==ODD || parity==EVEN) begin
ü parity_bit = compute_parity(data,parity);
end

ü else begin
ü parity_bit = 1’b0;
end

ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);
end
□ □ □ □

§ Dead code: default branch on exhaustive case
§ Don’t measure coverage for code that was not meant to run!

– Consider using ignore tags!

Note: 100%
statement coverage
but only 75% path

coverage!

26

Expression/Condition Coverage
Measures the various ways Boolean expressions and

subexpressions can be executed.
– Where a branch condition is made up of a Boolean expression, we want to know

which of the inputs have been covered.

ü if (parity==ODD || parity==EVEN) begin
ü parity_bit = compute_parity(data,parity);

end
ü else begin
ü parity_bit = 1’b0;

end
ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);

end

27

Expression/Condition Coverage
Measures the various ways Boolean expressions and

subexpressions can be executed.
– Where a branch condition is made up of a Boolean expression, we want to know

which of the inputs have been covered.

ü if (parity==ODD || parity==EVEN) begin
ü parity_bit = compute_parity(data,parity);

end
ü else begin
ü parity_bit = 1’b0;

end
ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);

end
□ □

– Analysis: Understand WHY part of an expression has not been covered

Note: Only 50%
expression
coverage!

28

Expression/Condition Coverage
Measures the various ways Boolean expressions and

subexpressions can be executed.
– Where a branch condition is made up of a Boolean expression, we want to know

which of the inputs have been covered.

ü if (parity==ODD || parity==EVEN) begin
ü parity_bit = compute_parity(data,parity);

end
ü else begin
ü parity_bit = 1’b0;

end
ü #(delay_time);
ü if (stop_bits==2) begin
ü end_bits = 2’b11;
ü #(delay_time);

end
□ □

– Analysis: Understand WHY part of an expression was not executed
§ Reaching 100% expression coverage is extremely difficult.

(See also MC/DC coverage, used in certification!) J

Note: Only 50%
expression
coverage!

29

Modified Condition/Decision (MC/DC) Coverage
Tutorial on MC/DC Coverage: “A Practical Tutorial on Modified
Condition/Decision Coverage” by Kelly Heyhurst et. al.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

30

Modified Condition/Decision (MC/DC) Coverage
Tutorial on MC/DC Coverage: “A Practical Tutorial on Modified
Condition/Decision Coverage” by Kelly Heyhurst et. al.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

Terminology:
The literals/inputs in a Boolean expression are termed conditions.
The output of a Boolean expression is termed decision.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

31

Modified Condition/Decision (MC/DC) Coverage
Tutorial on MC/DC Coverage: “A Practical Tutorial on Modified
Condition/Decision Coverage” by Kelly Heyhurst et. al.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

Terminology:
The literals/inputs in a Boolean expression are termed conditions.
The output of a Boolean expression is termed decision.

§ Decision coverage = branch coverage
– Requires that each decision toggles between true and

false.
§ e.g. in a || b vectors TF and FF satisfy this requirement

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

32

Modified Condition/Decision (MC/DC) Coverage
Tutorial on MC/DC Coverage: “A Practical Tutorial on Modified
Condition/Decision Coverage” by Kelly Heyhurst et. al.

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

Terminology:
The literals/inputs in a Boolean expression are termed conditions.
The output of a Boolean expression is termed decision.

§ Decision coverage = branch coverage
– Requires that each decision toggles between true and

false.
§ e.g. in a || b vectors TF and FF satisfy this requirement

§ Condition coverage (also called expression coverage)
– Requires that each condition (literal in a Boolean

expression) takes all possible values at least once, but
does not require that the decision takes all possible
outcomes at least once.
§ e.g. in a || b vectors TF and FT satisfy this requirement

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789_2001090482.pdf

33

Modified Condition/Decision (MC/DC) Coverage

§ Condition/Decision coverage
– Requires that each condition toggles and each decision

toggles,
§ e.g. in a || b vectors TT and FF satisfy this requirement

34

Modified Condition/Decision (MC/DC) Coverage

§ Condition/Decision coverage
– Requires that each condition toggles and each decision

toggles,
§ e.g. in a || b vectors TT and FF satisfy this requirement

§ Multiple Condition / Decision coverage
– Requires that all conditions and all decisions take all

possible values.
– This is exhaustive expression coverage.

§ e.g. in a || b vectors TT, TF, FT and FF satisfy this
requirement

– Exponential growth of the number of test cases in
number of conditions.

35

Modified Condition/Decision (MC/DC) Coverage

– MC/DC Coverage requires that each condition be
shown to independently affect the outcome of the
decision while fulfilment of the condition/decision
coverage requirements.
§ e.g. in a || b vectors TF, FT and FF satisfy this requirement

36

Modified Condition/Decision (MC/DC) Coverage

– MC/DC Coverage requires that each condition be
shown to independently affect the outcome of the
decision while fulfilment of the condition/decision
coverage requirements.
§ e.g. in a || b vectors TF, FT and FF satisfy this requirement

37

Modified Condition/Decision (MC/DC) Coverage

– MC/DC Coverage requires that each condition be
shown to independently affect the outcome of the
decision while fulfilment of the condition/decision
coverage requirements.
§ e.g. in a || b vectors TF, FT and FF satisfy this requirement

– The independence requirement ensures that the effect
of each condition is tested relative to the other
conditions.

– A minimum of (N + 1) test cases for a decision with N
inputs is required for MC/DC in general.

– In some tools MC/DC coverage is referred to as
Focused Expression Coverage (fec).

38

Data Flow Models

§ Coverage models that are based
on flow of data during execution

§ Each coverage task has two
attributes
– Define – where a value is assigned to

a variable (signal, register, …)
– Use – where the value is being used

process (a, b)
begin

s <= a + b;
end process

process (clk)
begin

if (reset)
a <= 0; b <= 0;

else
a <= in1; b <= in2;

end if
end process

39

Data Flow Models

§ Coverage models that are based
on flow of data during execution

§ Each coverage task has two
attributes
– Define – where a value is assigned to

a variable (signal, register, …)
– Use – where the value is being used

§ Types of dataflow models
– C-Use – Computational use
– P-Use – Predicate use
– All Uses – Both P and C-Uses

process (a, b)
begin

s <= a + b;
end process

process (clk)
begin

if (reset)
a <= 0; b <= 0;

else
a <= in1; b <= in2;

end if
end process

40

Data Flow Models

§ Coverage models that are based
on flow of data during execution

§ Each coverage task has two
attributes
– Define – where a value is assigned to

a variable (signal, register, …)
– Use – where the value is being used

§ Types of dataflow models
– C-Use – Computational use
– P-Use – Predicate use
– All Uses – Both P and C-Uses

process (a, b)
begin

s <= a + b;
end process

process (clk)
begin

if (reset)
a <= 0; b <= 0;

else
a <= in1; b <= in2;

end if
end process

41

Data Flow Models

§ Coverage models that are based
on flow of data during execution

§ Each coverage task has two
attributes
– Define – where a value is assigned to

a variable (signal, register, …)
– Use – where the value is being used

§ Types of dataflow models
– C-Use – Computational use
– P-Use – Predicate use
– All Uses – Both P and C-Uses

process (a, b)
begin

s <= a + b;
end process

process (clk)
begin

if (reset)
a <= 0; b <= 0;

else
a <= in1; b <= in2;

end if
end process

42

Mutation Coverage
§ Mutation coverage is designed to detect simple (typing)

mistakes in the code
– Wrong operator

§ + instead of –
§ >= instead of >

– Wrong variable
– Offset in loop boundaries

§ A mutation is considered covered if we found a test that
can distinguish between the mutation and the original
– Strong mutation – the difference is visible in the primary outputs
– Weak mutation – the difference is visible inside the DUV only

43

Mutation Coverage
§ Mutation coverage is designed to detect simple (typing)

mistakes in the code
– Wrong operator

§ + instead of –
§ >= instead of >

– Wrong variable
– Offset in loop boundaries

§ A mutation is considered covered if we found a test that
can distinguish between the mutation and the original
– Strong mutation – the difference is visible in the primary outputs
– Weak mutation – the difference is visible inside the DUV only

§ For more on Mutation Coverage see:
J Offutt and R.H. Untch. “Mutation 2000: Uniting the Orthogonal”

§ Commercial tools: Certitude by Synopsys
https://www.synopsys.com/verification/simulation/certitude.html

https://www.synopsys.com/verification/simulation/certitude.html

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

A. Jefferson Offutt and Ronald H. Untch. 2001. Mutation 2000: uniting the orthogonal.
Mutation testing for the new century. Kluwer Academic Publishers, USA, 34–44.

53

Code Coverage Models for Hardware

§ Toggle coverage
– Each (bit) signal changed its value from 0 to 1

and from 1 to 0
§ All-values coverage

– Each (multi-bit) signal got all possible values
– Used only for signals with small number of

values
§ For example, state variables of FSMs

CODE COVERAGE STRATEGY

55

Code Coverage Strategy
§ Set minimum % of code coverage depending on

available verification resources and importance of
preventing post tape-out bugs.
– A failure in low-level code may affect multiple high-level callers.
– Hence, set a higher level of code coverage for unit testing than for

system-level testing.

56

Code Coverage Strategy
§ Set minimum % of code coverage depending on

available verification resources and importance of
preventing post tape-out bugs.
– A failure in low-level code may affect multiple high-level callers.
– Hence, set a higher level of code coverage for unit testing than for

system-level testing.
§ Generally, verification plans include a 90% or 95% goal

for statement, branch or expression coverage.
– Some feel that less than 100% does not ensure quality.
– Beware:

§ Reaching full code coverage closure can cost a lot of effort!
§ This effort could be more wisely invested into other verification

techniques.

57

Code Coverage Strategy
§ Set minimum % of code coverage depending on

available verification resources and importance of
preventing post tape-out bugs.
– A failure in low-level code may affect multiple high-level callers.
– Hence, set a higher level of code coverage for unit testing than for

system-level testing.
§ Generally, verification plans include a 90% or 95% goal

for statement, branch or expression coverage.
– Some feel that less than 100% does not ensure quality.
– Beware:

§ Reaching full code coverage closure can cost a lot of effort!
§ This effort could be more wisely invested into other verification

techniques.
§ Avoid setting a goal lower than 80%.

58

Increasing Design Complexity

Multiple Power Domains, Security, Virtualisation
Nearly five million lines of code to enable Media gateway

Video
Display TV

Decode

Wireless xDSL

µC
MPEG

Processing
Core

Baseband Signal
Processor

OFDM
Modem

Processor
5-10K

Lines of
Microcode

>100K Lines
of Appl S/W

20-50K Lines
of Protocol

F/W

5-10K Lines
of Control

Code

250-500K
Lines of F/W

Over 2M Lines
of Application

S/W

50-100K
Lines of

Protocol F/W

250-300K
Lines of DSP

F/W

Up to 2M
Lines of

Network S/W

59

Increasing Design Complexity

At 95% coverage, this
leaves 250K LOC

not exercised during
simulation!

5-10K
Lines of

Microcode

>100K
Lines of

Appl S/W

20-50K
Lines of
Protocol

F/W

5-10K Lines
of Control

Code

250-500K
Lines of F/W

Over 2M Lines
of Application

S/W

50-100K Lines
of Protocol

F/W

250-300K
Lines of DSP

F/W

Up to 2M
Lines of
Network

S/W

LOC count: 10K
100K

50K
10K

500K
100K

2M
300K

2M
TOTAL: ~5M LOC

5M
LOC

STRUCTURAL COVERAGE

61

Structural Coverage

§ Implicit coverage models that are based
on common structures in the code
– FSMs, Queues, Pipelines, …

§ The structures are extracted automatically
from the design and pre-defined coverage
models are applied to them

§ Users may refine the coverage models
– Identify and declare illegal events

62

State-Machine Coverage
§ State-machines are the essence of RTL

design
§ FSM coverage models are the most

commonly used structural coverage models
§ Types of coverage

models
– State coverage
– Transition (or arc)

coverage
– Path coverage

63

State-Machine Coverage
§ State-machines are the essence of RTL

design
§ FSM coverage models are the most

commonly used structural coverage models
§ Types of coverage

models
– State coverage
– Transition (or arc)

coverage
– Path coverage

64

FSM Coverage Report

65

Code Coverage - Limitations
§ Coverage questions not answered by code coverage

– Did every instruction take every exception?
– Did two instructions access a specific register at the same time?
– How many times did a cache miss take more than 10 cycles?
– …(and many more)
– Does the implementation cover the functionality specified?

[Need RBT!]

66

Code Coverage - Limitations
§ Coverage questions not answered by code coverage

– Did every instruction take every exception?
– Did two instructions access a specific register at the same time?
– How many times did a cache miss take more than 10 cycles?
– …(and many more)
– Does the implementation cover the functionality specified?

[Need RBT!]

§ Code coverage only indicates how thoroughly the test
suite exercises the source code!
– Can be used to identify outstanding corner cases

§ Code coverage lets you know if you are not done!
– It does not permit any conclusions about the functional correctness of

the code, nor does it help us understand whether all the functionality
was covered!

So, 100% code coverage does not mean very much. L
§ We need another form of coverage!

