
COMS30026 Design Verification

Verification Cycle,
Verification Methodology &

Verification Plan

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

The Verification Cycle

4

The Verification Cycle
Functional

Specification

5

Functional Specifications
§ The functional specification describes the

desired product
§ It contains the specification of:

– The function that it must perform.
– The interfaces with which it communicates.
– The conditions that affect the design.

§ Designers implement the specification in HDL
§ Verification engineers incorporate the functional

specification into the verification plan and
environment.
– This may seem redundant, but it is the foundation of

verification, i.e. the specification for the verification
process.

6

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan

7

Create Verification Plan
§ Functions to be verified:

– List the functions that will be verified at this level of verification.
– Functions not covered: any functions that must be verified at a

different level of the hierarchy.
§ Specific tests and methods:

– Define the type of environment that the verification engineers will
create.

§ Completion criteria:
– Define the measurements that indicate when verification is

complete.
§ Required tools:

– List the software and hardware necessary to support the
verification planned.

§ Resources required (people) and schedule details:
– Goal is to link the plan to the project management by

estimating the cost of verification.

8

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Plan
Review

9

Develop Verification Environment
§ The verification environment includes the

software code (e.g. testbench) and tools that
enable the verification engineer to identify flaws
in the design.
– The software code tends to be specific to the design,
– while the tools are more generic and are used across

multiple verification projects.
§ Major components in the verification

environment are
– stimulus and checking for simulation-based

environments, and
– rules generation (properties) for formal verification

environments
§ The environment is continually refined

throughout the verification cycle
– e.g. fixes and additions to the software code

10

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Debug HDL and
Environment

Plan
Review

11

Debug HDL and Environment
§ Run tests according to the verification plan and

look for anomalies
§ Examine the anomalies to reveal the failure

source, the root cause of the failure
– Remember, bugs can be either in the verification

environment or in the HDL design
§ Fix the cause of the failure

– Either the verification environment or the HDL design
§ Once the problem is fixed, rerun the exact same

test(s)
– Aim to ensure that the update corrects the original

anomaly and does not introduce new ones
§ Update the verification plan based on lessons

learnt

12

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Debug HDL and
Environment

Run Regression

Plan
Review

13

Run Regression
§ Regression is the continuous running of the

tests defined in the verification plan
§ Often, verification teams leverage large

workstation pools, or “farms”, to run an ever-
increasing number of verification jobs

§ Regression is used to uncover hard-to-find bugs
and ensure that the quality of the design keeps
improving

§ With chip fabrication on the horizon, the
verification team must reflect on the environment
to ensure that
– they have applied all valid scenarios to the design
– and performed all pertinent checks
This is the tape-out readiness checkpoint.

14

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Debug HDL and
Environment

Run Regression

Debug Fabricated
Hardware

Tape Out
Readiness

Plan
Review

15

Debug Fabricated Hardware

§ The design team releases the hardware to the
fabrication facility when they meet all fabrication
criteria
– This process is also known as the tape-out.

§ The design team receives the hardware once
the chip fabrication completes

§ The hardware is then mounted on test platforms
or into the planned systems for these chips

§ The hardware debug team performs the
“hardware bring-up”
– During hardware bring-up, further anomalies may

present themselves.

16

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Debug HDL and
Environment

Run Regression

Perform Escape
Analysis

Debug Fabricated
Hardware

Tape Out
Readiness

Plan
Review

17

Perform Escape Analysis
§ Analysis of bugs that were found later than when they

should have been found
§ The goal is to fully understand the bug, as well as the

reasons why it went undiscovered by the verification
environment

§ Important goal: Reproduce the bug in a simulation
environment, if possible.
– The lack of reproduction in the verification environment indicates

that the design and/or the verification team may not understand the
bug.

– It would then follow that the team cannot claim that the bug fix is
correct or complete unless they can reproduce the original bug in
the verification environment and then re-run specific tests on the
updated design to demonstrate that the bug fix has been effective
and no new bugs have been introduced.

§ Reproducing the bug in the verification environment is also
critically important to make sure that this same bug won’t
escape again in any future versions of the design.

18

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Debug HDL and
Environment

Run Regression

Perform Escape
Analysis

Debug Fabricated
Hardware

Lessons
Learned

Tape Out
Readiness

Plan
Review

19

Common Verification Breakdowns

§ Verification based on the design itself
instead of the specification

§ Underdeveloped verification plans
§ Underdeveloped specifications
§ Lack of resources
§ Tape-out based on schedule instead of

pre-defined measures

This also applies to your practical too.

20

Summary
§ Functional verification is a necessary step in the

development of today’s complex digital designs
§ Verification engineers must understand the specification,

architecture and internal microarchitecture of the design
under verification
– They couple this knowledge with programming skills, RTL

comprehension, and a detective’s ability to find the scenarios
that uncover bugs.

§ The two main challenges in the verification process:
– Creation of a comprehensive set of stimuli
– Identification of incorrect behavior when encountered

The foundation for successful verification is a well-
defined verification cycle
§ The process includes creation of test plans, development

of the verification environment, performing verification,
debugging, and the analysis of any holes in the
verification environment and/or the verification plan

Verification
Methodology

22

Simulation-based Verification Environment Flow

Output
Simulation

Engine

Test case results

Test case
Test case
Driver or
translator

(not always required)

Design
Source

Model

VHDL
Verilog

Environment
Data

Initialization
Run-time requirements

24

Verification Methodology Evolution

Tim
e

Test Patterns

(Remember that there is also Formal Verification, but this is not covered here.)

26

Test Patterns

§ Patterns that are created to test specific
behaviors

§ Each pattern handles a single scenario
§ Tests patterns are hand generated
§ DUV behavior is manually checked

– For example, by viewing wave forms
§ Expensive to create
§ Expensive to maintain
§ Expensive to execute

27

Verification Methodology Evolution

Tim
e

Test Patterns

Test Cases

(Remember that there is also Formal Verification, but this is not covered here.)

28

Test Cases

§ Stimulus is still hand generated and for a single
scenario, but there is a significant change wrt.
checking

§ Checking is automated over two stages
– Self checking tests

§ The test knows at which signals to look and which values
should be there at the end of the test

– Automatic checking
§ The checking is independent of the stimulus

§ Automatic checking opens the door for random
stimuli generation

§ Around this stage the verification profession
was born

29

Verification Methodology Evolution

Tim
e

Test Patterns

Test Cases

Test Case
Generators

(Remember that there is also Formal Verification, but this is not covered here.)

30

Test Case Generators

§ Replace hand-crafted specific test patterns
with machine generated random patterns
– Single scenario → multiple scenarios
– Specific target → more generic targets
– Small number of tests → large number of

tests
§ Test case generators are tools that are

external to the verification environment
– Offline generation
– For the environment, tests are hardcoded

31

Verification Methodology Evolution

Tim
e

Test Patterns

Test Cases

Test Case
Generators

Test Case
Drivers

(Remember that there is also Formal Verification, but this is not covered here.)

32

Test Case Drivers

§ The stimuli generation is embedded in the
verification environment

§ Stimuli are generated during the operation
of the environment (and simulation)

§ The driver can react to the state of the
DUV
– Can improve the quality of the stimuli and

stress per cycle

33

Verification Methodology Evolution

Tim
e

Test Patterns

Test Cases

Test Case
Generators

Test Case
Drivers

(Remember that there is also Formal Verification, but this is not covered here.)

Coverage tools

34

Coverage
§ The move from target-specific test cases to

random stimuli generation reduced the ability of
the verification team to ensure that all
interesting cases are verified

§ Coverage measurement and analysis are the
“automatic replacement” for this
– Replaces one-to-one matching with many-to-many

§ Many tests can potentially hit many interesting cases
§ Coverage measures whether test cases hit the

scenarios they are supposed to hit
– And highlights untested areas

§ Coverage measures the effectiveness of the
verification

35

Verification Methodology Evolution

Tim
e

Test Patterns

Test Cases

Test Case
Generators

Test Case
Drivers

(Remember that there is also Formal Verification, but this is not covered here.)

Coverage tools

Verification Plan

37

Outline

§ Evolution of the Verification plan
§ Contents of the Verification plan

– Functions to be verified
– Specific tests
– Coverage goals
– Test case scenarios (Test list)

§ calc1 DUV example

38

Evolution of the Verification Plan

§ The source of the verification plan is the
Functional Spec document
– Must understand the DUV before determining

how to verify it
– Confront unclear and ambiguous definitions
– Incomplete and changing continuously

§ Other factors may affect its content

39

Design and Verification Process Interlock

Design Cycle Duration

High Level
Design

Design Implementation
Final Physical
Design

Create
Verification
Plan

Evolve Verification Plan

Implement
Environment
From Plan Debug HDL and Environment:

Write and Run Tests from Plan Regression

Functional
Specification
DevelopmentA

rc
hi

te
ct

s
D

es
ig

ne
rs

Ve
rif

ic
at

io
n

En
gi

ne
er

s

Initial Review Milestone Final Review Milestone Tape Out

40

Contents of the Verification Plan

§ Description of the verification levels
§ Functions to be verified
§ Specific tests and methods
§ Test scenarios (Matrix)
§ Coverage requirements
§ Completion criteria
§ Resource requirements
§ Required tools
§ Schedule
§ Risks and dependencies

41

Description of Verification Levels

§ The first step in building the verification plan is to
decide on which levels to perform the verification

§ The decision is based on many factors, such as
– The complexity of each level
– Resources
– Risk
– Existence of a clean interface and specification

§ The decision should include which functions are
verified at which level

§ Each level and function selected need to have
their own verification plan

42

calc1 DUV Verification Plan
§ The design description details the intent of the

calc1 design.
– It is the verification engineer’s job to demonstrate that

the actual design implementation matches the intent.
§ Even for a relatively simple design like calc1, it is

still best not to jump into test case writing before
thinking through the verification requirements
and developing a verification plan.

§ Please note:
– For the next live session, you can bring a verification plan – no

matter how sketchy.
– We will review some of these verification plans.
– The feedback can be used to improve these plans.

43

Verification Levels for calc1

§ calc1 is simple enough to be verified only
at the top level of the DUV
– In addition, we do not have enough details on

the internal components (black box)
§ In more realistic world we may decide to

verify the ALU and shifter alone
– For example, using formal verification

44

Functions to be verified

§ This section lists the specific functions of the
DUV that the verification team will exercise

§ Functions not verified at this level
– Fully verified at a lower level
– Not applicable to this level

§ Assign Priority for each function
– Critical functions
– Secondary functions

45

Required Tools

§ Specification and list of the verification toolset
– Simulation engines
– Debuggers
– Verification environment authoring tools
– Formal verification tools
– … and more

§ For calc1 practical
– Simulation engine
– Waveform viewer
– Verification environment authoring tool

46

Decisions to be made
1. What level of observability and controllability?

– Black box
– White box
– Grey box

2. Verification Strategy
– Directed testing
– Constrained pseudo-random test generation
– Formal Verification

3. Checking
– I/O checking for data correctness
– Behavioral rules for timing compliance, priority logic, etc

4. Abstraction level
– From bit-level representation
– via transactions (packet sequences or instruction streams)
– up to the algorithmic level.

47

Abstraction Levels

DUV

Bit Level
(no abstraction)

Command & Data
“packet” level

Groups of bits

Groups of packets
across time

Groups of
sequences across

time

Verification
Level

Designer

System

Program or
Algorithmic Level

Sequence Level

Which level(s) will you use for the calc1 DUV?

48

Integer vs bit-level data

49

Integer vs bit-level data

50

Integer vs bit-level data

Using a different level of abstraction allows us to
see how these numbers differ in terms of how

they exercise the logic in the design.

51

Coverage Requirements
§ Coverage is defined as events (or scenarios) or

families of events that span the functionality and
code of the DUV
– The environment has exercised all types of commands

and transactions
– The stimulus generator has created a specific or

varying range of data
– The environment has driven varying degrees of legal

concurrent stimulus
§ Coverage is the feedback mechanism that

evaluates the quality of the stimuli
– Some aspects of coverage can be achieved using

direct testing
– Mandatory in all random-based verification

environments

52

Completion Criteria
Regress

Coverage
Complete?

Bug Rate
Dropped

No Open
Issues

Review

Clean
Regression “Ship It”!

Yes

No

No

No

No

No

Yes

Yes

Yes
Yes

These might
include:

§ Coverage
targets

§ Other
metrics, e.g.
bug rate drop

§ Resolution of
open issues

§ Review
§ Regression

results

53

Test Scenarios (Matrix)

§ Specifies test scenarios that will be used
throughout the verification process
– direct testing and pseudo-random techniques

§ Scenarios are connected to items in the
coverage requirements

§ Start with a basic set for the basic
functionality
– Add more tests to plug holes in coverage,

reach corner cases, etc.
§ Examples for calc1 design

54

Test Scenarios for calc1: Basic Tests (partial list)

DescriptionTest #

Create a scenario that allows checking the basic command-
response protocol on each of the four ports for each
command

1.1

Create a scenario that allows checking the operation of each
command (on each port?)1.2

Create a scenario that allows checking overflow and
underflow for add and subtract commands1.3

Create a scenario that ...1.4

These generic tests should be broken to more specific tests
§ Test case 1.1.1.1 : ... protocol for add command on channel 1
§ …
§ Test case 1.1.2.4 : ... protocol for sub command on channel 4

55

Test Scenarios for calc1: Advanced Tests (partial list)

DescriptionTest #Topic
For each individual port, check that each command can be followed by
another command without leaving the state of the design dirty2.1.1

Command
sequences For all ports combined, check that each command can be followed by

another command without leaving the state of the design dirty
(concurrent commands)

2.1.2

Check that there is fairness among the channels2.2Fairness

Add two numbers that overflow2.3.1

Corner
cases

Add two numbers that reach the maximum value2.3.2

Subtract two numbers that underflow2.3.3

Subtract two equal numbers (result is 0)2.3.4

Shift (left and right) 0 places2.3.5

Shift completely out (left and right) 2.3.6

56

Risks and Risk Management
§ Consider verification process in the context of the

complexity of the design and the overall design project
§ Maturity and closure of the architecture and

microarchitecture
§ Availability of resources

– Not just those used for verification, but also those beyond your
control.

– New tools and associated learning curve
§ Deliveries

– Internal
– External

§ Dependencies
– Design availability
– Quality of lower levels of verification
– Tools and third-party verification IP

57

Summary
§ Verification Cycle

– Foundation for
verification

§ Verification
Methodology
– Evolution of:

§ Test patters
§ Test cases
§ Test case

generators/drivers
§ Verification Plan

– The specification for the verification process.

