
COMS31700 Design Verification

Hardware Design
Languages

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

Hardware Design Languages
§  Hardware Design Languages were built with simulation in mind

–  Synthesis and other back-end purposes were added at a later stage
§  Most popular languages today (both are IEEE standards)

–  VHDL
–  Verilog/SystemVerilog

§  VHDL:
–  Committee-designed language contracted by U.S. (DoD) (Ada-derived)
–  Functional/logic modeling and simulation language
–  Main differentiator from Verilog is types (e.g. records)

§  Verilog:
–  Logic modeling and simulation language
–  Started in EDA industry in the 80's then owned by Cadence
–  Donated to IEEE as a general industry standard
–  SystemVerilog (the next generation of Verilog) is designed to improve

abstraction of Verilog
§  Abstraction levels
§  Data types
§  Verification constructs

§  Verilog vs. VHDL: personal preferences, EDA tool availability, commercial,
business and marketing issues.

3

Modeling Levels – Major Dimensions
§  Temporal Dimension:

–  continuous (analog)
–  gate delay
–  clock cycle
–  instruction cycle
–  events

§  Data Abstraction:
–  continuous (analog)
–  bit : multiple values
–  bit : binary
–  abstract value
–  composite value ("struct")

§  Functional Dimension:
–  continuous functions (e.g. differential equations)
–  Switch-level (transistors as switches)
–  Boolean Logic
–  Algorithmic (e.g. sort procedure)
–  Abstract mathematical formula (e.g. matrix multiplication)

§  Structural Dimension:
–  Single black box
–  Functional blocks
–  Detailed hierarchy with primitive library elements

discrete time

discrete value

4

Continuous Gate Delay Clock Cycle Instruction Cycle Events

Continuous Multivalue Bit Bit abstract value "struct"

Continuous Switch Level Boolean Logic Algorithmic Abstract Mathematical

Single Black Box Functional Blocks Detailed Component
Hierarchy

Temporal

Data

Functional

Structural

Modeling Levels – Major Dimensions

Verilog SystemVerilog VHDL Extremely inefficient

5

Verilog for Design Verification
§  Assignment calc1 design in Verilog

–  Testbench for calc1 design in Verilog
§  Interactive Evita Verilog tutorial (Ch1-4,5-7):

–  Structure of Verilog modules
–  Verilog signal values: 0, 1, x and z (4-valued logic)

•  0 represents logic zero, or false
•  1 represents logic one, or true
•  x represents an unknown logic value
•  z represents a high-impedance state, i.e. signal not

driven or not connected

7

Verilog for Design Verification
§  Assignment calc1 design in Verilog

–  Testbench for calc1 design in Verilog
§  Interactive Evita Verilog tutorial (Ch1-4,5-7):

–  Structure of Verilog modules
–  Verilog signal values: 0, 1, x and z (4-valued logic)
–  Verilog signals:

§  nets (used for “connections”, no storage capacity)
§  registers (storage capacity, similar to variables in pgr languages)

–  Verilog external signals:
§  ports (input, output or inout, port connecting rules)

–  Coding styles:
§  Structural
§  Dataflow
§  Behavioural (best for verification)

8

Continuous Assignment
§  Used in Dataflow coding style.

–  assign #4 Out = In1 & In2;
§  Keyword assign followed by optional delay declaration
§  LHS (target) can be net (scalar or vector) or

concatenation of nets
–  NO registers allowed as target for assignment!

§  Assignment symbol: =
§  RHS is an expression.
§  Implicit continuous assignment: wire x = ...;
§  Conditional assignment:

–  assign Out = Sel ? In1 : In0;
–  If Sel is 1 then In1 is assigned to Out; if Sel is 0 then Out is
In0.

–  If Sel is x/z, evaluate both In1 and In0, if they are the same
then Out is assigned this value, otherwise x/z.

9

Continuous Assignment: Execution
§  Continuous assignments are always active.
§  Concurrency:

–  When any of the operands on RHS changes,
assignment is evaluated.

–  Several assignments can be executed concurrently.
–  Race conditions can occur!

§  Two or more assignments, which operate on the same data,
read and write the data concurrently.

§  Result, which might be erroneous, depends on which
assignment does what when.

§  Delays specify time between change of operand on RHS
and assignment of resulting value to LHS target.
–  assign #4 Out = In1 & In2;

10

Behavioural Coding Style
§  Behaviour:

–  Actions a circuit is supposed to perform when it is active.

§  Most advanced coding style: flexible and high-level
–  closest to programming languages
–  allows use of conditional statements, case statements, loops, etc.

Best for verification, but by no means ideal...

§  Algorithmic description: Need ”variables” similar to PLs!
–  Abstraction of data storage elements - register objects:

§  reg R; one bit register - default value x before first assignment
§  time T; can store/manipulate simulation time
§  integer N; by default at least 32 bit - stores values signed
§  real R; default value is 0
§  [Other data types, e.g. arrays exist, but are out of the scope of this

introduction.]

11

Behavioural Constructs for Coding

§  Conditionals:
 if (expression true) true branch;
else false branch;

§  Case:
 case ({_,...,_})
 pattern : ...;
 ...
 default : ...;
 endcase
§  Loops: forever, repeat, while, for
§  See Verilog reference card for syntax!

12

Mux421: Behavioural Coding Example

module mux421_behavioural (Out, In0, In1, In2, In3, Sel0, Sel1);
 output Out;
 input In0, In1, In2, In3, Sel0, Sel1;
 reg Out;
 always @ (Sel1 or Sel0 or In0 or In1 or In2 or In3)
 begin
 case ({Sel1,Sel0})
 2’b00 : Out = In0;
 2’b01 : Out = In1;
 2’b10 : Out = In2;
 2’b11 : Out = In3;
 default : Out = 1’bx;
 endcase
 end
endmodule // mux421_behavioural

13

Mux421: Behavioural Coding Example

module mux421_behavioural (Out, In0, In1, In2, In3, Sel0, Sel1);
 output Out;
 input In0, In1, In2, In3, Sel0, Sel1;
 reg Out;
 always @ (Sel1,Sel0,In0,In1,In2,In3) // Verilog 2001 style
 begin
 case ({Sel1,Sel0})
 2’b00 : Out = In0;
 2’b01 : Out = In1;
 2’b10 : Out = In2;
 2’b11 : Out = In3;
 default : Out = 1’bx;
 endcase
 end
endmodule // mux421_behavioural

14

Behavioural Blocks
§  initial and always

–  Can’t be nested.
–  Block containing several statements must be grouped using:

§  begin ... end (sequential) or
§  fork ... join (concurrent)

§  initial block:
–  Used to initialise variables (registers).
–  Executed at (simulation) time 0. Only once!

§  always block:
–  Starts executing at time 0.
–  Contents is executed in infinite loop.

§  Means: Execution repeats as long as simulation is running.
–  Multiple blocks are all executed concurrently from time 0.

15

Assignment in Behavioural Coding
Assignment in behavioural coding style is procedural:

 #5 C = #10 A+B;
§  LHS (target) must be a register (reg, integer, real or time) -

not a net, a bit or part of a vector of registers.
§  NO assign keyword!
§  Must be contained within a behavioural (i.e. initial or
always) block.

§  NOT always active!
–  Target register value is only changed when procedural assignment is

executed according to sequence contained in block.
§  Delays: indicate time that simulator waits from ”finding” the

assignment to executing it.

16

 Blocking Assignment
 (... as opposed to continuous assignment from
dataflow coding style.)

§  Sequential initialization assignment.
reg A;
reg [7:0] Vector;
integer Count;
initial
begin
 A = 1’b0;
 Vector = 8’b0;
 Count = 0;
end

17

Timing Control Evaluation

1. Find procedural assignment
2. Wait 5 time units
3. Perform A+B
4. Wait 10 time units
5. Assign result to C

§  So, what is the difference between:
–  #10 C = A+B and
–  C = #10 A+B?

#5 C = #10 A+B;

Assignment delay
Intra-assignment delay

18

Events and Wait

§  Events mark changes in nets and registers, e.g.
raising/falling edge of clock.
–  @ negedge means from any value to 0
–  @ posedge means from any value to 1
–  @ clk always activates when clock changes

§  Wait statement:
–  wait (condition) stmt;

§  wait (EN) #5 C = A + B;
–  waits for EN to be 1 before #5 C = A + B;

§  Use wait to block execution by not specifying a
statement!
–  wait (EN); ...

19

Sensitivity List

§  Allows to suspend always blocks.
§  Block executes and suspends until signal (one or more)

in sensitivity list changes.
§  NOTE: Old or notation is used to make statement

sensitive to multiple signals or events.
–  (Don’t use sensitivity list to express a logical condition!)

§  Common mistake:
–  Forgetting to add relevant signals to sensitivity list!

always @(sensitivity list) <begin> <procedural stments> <end>

always @ (posedge Clk or EN)
begin ... end

always @ (Sel1,Sel2) // Verilog 2001 style
begin ... end

20

Non-blocking Assignments
§  Can be used to introduce concurrency into sequential

statements.
–  Delay is counted down before assignment,
–  BUT control is passed to next statement immediately.

§  Non-blocking Assignments allow to model multiple
concurrent data transfers after common event.
–  A blocking assignment would force sequential execution.

 A <= #1 1; B <= #2 0; (non-blocking) A x 1 1 1
 B x x 0 0
 Time: 0 1 2 3

 A = #1 1; B = #2 0; (blocking) A x 1 1 1
 B x x x 0
 Time: 0 1 2 3

21

Approaches to Assignment - I
reg [7:0] MyReg;
initial
 fork
 #50 MyReg = 8’hFF;
 #100 MyReg = 8’h01;
 #150 MyReg = 8’h2F;
 #200 MyReg = 8’h00;
 #250 $finish;
 join

§  Concurrent but using blocking assignment (=)
Time: 0 50 100 150 200 250

 MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

22

Approaches to Assignment - II
reg [7:0] MyReg;
initial
 begin
 MyReg <= #50 8’hFF; // pass control, wait, assign
 MyReg <= #50 8’h01;
 MyReg <= #50 8’h2F;
 MyReg <= #50 8’h00;
 #250 $finish;
 end

§  Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250

 MyReg[7:0] XX

Important when driving input into a DUV in a testbench!

Race Condition!

?? ?? ?? ?? ??

23

Approaches to Assignment - III
reg [7:0] MyReg;
initial
 begin
 MyReg <= #50 8’hFF; // pass control, wait, assign
 MyReg <= #100 8’h01;
 MyReg <= #150 8’h2F;
 MyReg <= #200 8’h00;
 #250 $finish;
 end

§  Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

24

Approaches to Assignment - IV
reg [7:0] MyReg;
initial
 begin
 #50 MyReg = 8’hFF; // wait, assign, pass control
 #50 MyReg = 8’h01;
 #50 MyReg = 8’h2F;
 #50 MyReg = 8’h00;
 #250 $finish;
 end

§  Sequential with blocking assignment (=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

25

HDL vs. Programming Languages
3 major new concepts of HDLs compared to PLs:

§  Connectivity:
–  Ability to describe a design using simpler blocks and then connecting

them together.

§  Time:
–  Can specify a delay (in time units of simulator): (WHY?)

§  and #2 (Y3, In3, Sel1, Sel0);

§  Concurrency is always assumed! (for structural style this is)
–  No matter in which order primitives/components are specified, a change

in value of any input signal activates the component.
–  If two or more components are activated concurrently, they perform

their actions concurrently.
–  Order of specification does not influence order of activation!
–  (NOTE: Statements inside behavioural blocks may be sequential -more

later.)

Tasks and Functions

27

Tasks and Functions

§  Both are purely behavioural.
–  Can’t define nets inside them.
–  Can use logical variables, registers, integers and reals.

§  Must be declared within a module.
–  Are local to this module.
–  To share tasks/functions in several modules, specify declaration

in separate module and use ‘include directive.
§  Timing (simulation time)

–  Tasks:
§  No restriction on use of timing; engineer specifies execution.

–  Functions:
§  Execute in ZERO sim time units; no timing/event control allowed.

28

Example Task
task factorial;
 output [31:0] f;
 input [3:0] n;
 integer count; // local variable
 begin
 f = 1;
 for (count=n; count>0; count=count-1)
 f = f * count;
 end
endtask

§  Invoke task: < task name > (list of arguments);
–  Declaration order determines order of arguments when task is called!

29

Example Function

function ParityCheck;
 input [3:0] Data;
 begin
 ParityCheck = ˆData; // bit-wise xor reduction
 end
endfunction

§  Result is by default a 1 bit register assigned to implicitly declared
local variable that has same name as function.

§  Function calls:
–  Are either assigned to a variable, or
–  occur in an expression that is assigned to a variable,
–  or occur as an argument of another function call.

30

Comparing Tasks with Functions

Tasks Functions

Timing can be non-zero sim
time

execute in 0 sim time

Calling other
tasks or
functions

no limit;
may enable functions

may not call tasks but may call
another function
No recursion!

Arguments any number;
any type;
can’t return result

at least one input;
no output/inout;
always results in single return value

Purpose modularize code react to some input with single
response;
only combinatorial code;
use as operands in expressions

31

System Tasks and Functions

§  More than 100 Verilog system tasks/functions.
–  (See Evita Verilog Reference Guide for more

information.)
§  Can be used in any module without explicit

include directive.
§  Syntax: $< keyword >
§  Most important tasks for verification:

–  $display, $monitor
–  $time, $stop, $finish
–  (Also with files: $fopen, $fdisplay)

32

Summary

§  Evita Verilog Tutorial [Ch1-7]
§  Verilog HDL IEEE Standard 1364-2001

–  Signals: internal and external (ports)
–  Different coding styles:

§  structural
§  dataflow
§  behavioural

§  SystemVerilog builds on IEEE 1364-2005
§  HDLs: Connectivity, Time and Concurrency
§  BOOK: Verilog HDL by Samir Palnitkar [in QB Library]
§  Next: Specification of Assignment 1!

