COMS31700 Design Verification
Hardware Design

Languages

Kerstin Eder

(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

-% University of Department of & 2
AL BRISTOL COMPUTER SCIENCE

Hardware Design Languages

Hardware Design Languages were built with simulation in mind
— Synthesis and other back-end purposes were added at a later stage

Most popular languages today (both are IEEE standards)
— VHDL
— Verilog/SystemVerilog
VHDL.:
— Committee-designed language contracted by U.S. (DoD) (Ada-derived)
— Functional/logic modeling and simulation language
— Main differentiator from Verilog is types (e.g. records)
Verilog:
— Logic modeling and simulation language
— Started in EDA industry in the 80's then owned by Cadence
— Donated to IEEE as a general industry standard

— SystemVerilog (the next generation of Verilog) is designed to improve
abstraction of Verilog
= Abstraction levels
» Data types
= Verification constructs

Verilog vs. VHDL.: personal preferences, EDA tool availability, commercial,
business and marketing issues.

Modeling Levels — Major Dimensions

= Temporal Dimension:
— continuous (analog)
— (gate delay
— clock cycle : :
— instruction cycle discrete time
— events
Data Abstraction:
— continuous (analog)
— bit : multiple values
— bit: binary :
— abstract value dISCF‘ZTe VC(IUC
— composite value ("struct")
Functional Dimension:
— continuous functions (e.g. differential equations)
— Switch-level (transistors as switches)
— Boolean Logic
— Algorithmic (e.g. sort procedure)
— Abstract mathematical formula (e.g. matrix multiplication)
Structural Dimension:
— Single black box
— Functional blocks
— Detailed hierarchy with primitive library elements

Modeling Levels — Major Dimensions

Temporal

Continuous

Clock Cycle

Instruction Cycle

Data

Continuous

abstract value

Structural

Single Black Box

Functional Blocks

Detailed Component
Hierarchy

= \/erilog

wem wm== SystemVerilog

mem ==Extremely inefficient

Verilog for Design Verification

= Assignment calc1 design in Verilog
— Testbench for calc1 design in Verilog
= |nteractive Evita Verilog tutorial (Ch1-4,5-7):

— Structure of Verilog modules
— Verilog signal values: 0, 1, x and z (4-valued logic)

and

Xor

0 represents logic zero, or false
1 represents logic one, or true
X represents an unknown logic value

Z represents a high-impedance state, i.e. signal not

driven or not connected

Verilog for Design Verification

Assignment calc1 design in Verilog
— Testbench for calc1 design in Verilog

Interactive Evita Verilog tutorial (Ch1-4,5-7):

— Structure of Verilog modules
— Verilog signal values: 0, 1, x and z (4-valued logic)
— Verilog signals:

» nets (used for “connections”, no storage capacity)

» registers (storage capacity, similar to variables in pgr languages)
— Verilog external signals:

= ports (input, output or inout, port connecting rules)
— Coding styles:

= Structural

= Dataflow

» Behavioural (best for verification)

Continuous Assignment

Used in Dataflow coding style.
— assign #4 Out = Inl & In2;
Keyword assign followed by optional delay declaration

LHS (target) can be net (scalar or vector) or
concatenation of nets

— NO registers allowed as target for assignment!
Assignment symbol: =

RHS is an expression.

Implicit continuous assignment: wire x cees

Conditional assignment:
— assign Out = Sel ? Inl : InO;

— If Selis 1 then In1 is assigned to Out; if Sel is 0 then Out is
InO.

— If Sel is x/z, evaluate both In1 and Ino0, if they are the same
then Out is assigned this value, otherwise x/z.

Continuous Assignment: Execution

= Continuous assignments are always active.

= Concurrency:

— When any of the operands on RHS changes,
assignment is evaluated.

— Several assignments can be executed concurrently.

— Race conditions can occur!

= Two or more assignments, which operate on the same data,
read and write the data concurrently.

» Result, which might be erroneous, depends on which
assignment does what when.

= Delays specify time between change of operand on RHS
and assignment of resulting value to LHS target.

— assign #4 Out = Inl & In2;

Behavioural Coding Style

= Behaviour:
— Actions a circuit is supposed to perform when it is active.

= Most advanced coding style: flexible and high-level
— closest to programming languages
— allows use of conditional statements, case statements, loops, etc.

Best for verification, but by no means ideal...

= Algorithmic description: Need "variables™” similar to PLs!

— Abstraction of data storage elements - register objects:
» reg R; one bit register - default value x before first assignment
* time T; can store/manipulate simulation time
» integer N; by default at least 32 bit - stores values signed
» real R; defaultvalueis O

= [Other data types, e.g. arrays exist, but are out of the scope of this
introduction.]

 Behavioural Constructs for Coding

Conditionals:

1f (expression true) true branch;
else false branch;

Case:
case ({_,...,_})
pattern : ...,
default : ...;
endcase

Loops: forever, repeat, while, for
See Verilog reference card for syntax!

11

Mux421: Behavioural Coding Example

module mux421 behavioural (Out, InO, Inl, In2, In3, SelO, Sell);

output Out;

input In0O, Inl, In2, In3, SelO, Sell;

reqg Out;

always @ (Sell or SelO0 or In0O or Inl or In2 or In3)
begin

case ({Sell,Sel0})
2'’b00 : Out = In0;
2’b01 : Out = Inl;

2'’bl0 : Out = In2;
2’'bll : Out = In3;
default : Out = 1’'bx;
endcase
end

endmodule // mux421 behavioural

12

Mux421: Behavioural Coding Example

module mux421 behavioural (Out, InO, Inl, In2, In3, SelO, Sell);

output Out;

input In0O, Inl, In2, In3, SelO, Sell;

reqg Out;

always @ (Sell,Sel0,In0,Inl,In2,In3) // Verilog 2001 style
begin

case ({Sell,Sel0})
2'’b00 : Out = In0;
2’b01 : Out = Inl;

2'’bl0 : Out = In2;
2’'bll : Out = In3;
default : Out = 1’'bx;
endcase
end

endmodule // mux421 behavioural

13

Behavioural Blocks

* initial and always
— Can’t be nested.

— Block containing several statements must be grouped using:
" begin ... end (sequential) or
= fork ... join (concurrent)

= initial block:
— Used to initialise variables (registers).
— Executed at (simulation) time 0. Only once!

= always block:
— Starts executing at time 0.
— Contents is executed in infinite loop.
= Means: Execution repeats as long as simulation is running.
— Multiple blocks are all executed concurrently from time O.

14

~ Assignment in Behavioural Coding

Assignment in behavioural coding style is procedural:
#5 C =#10 A+B:;

= |LHS (target) must be a register (reg, integer, real or time) -
not a net, a bit or part of a vector of registers.

* NO assign keyword!

= Must be contained within a behavioural (i.e. initial or
always) block.

= NOT always active!

— Target register value is only changed when procedural assignment is
executed according to sequence contained in block.

= Delays: indicate time that simulator waits from "finding” the
assignment to executing it.

15

Blocking Assignment

(... as opposed to continuous assignment from
dataflow coding style.)

= Sequential initialization assignment.

reg A;
reg [7:0] Vector;
integer Count;

initial

begin
A = 1'b0;
Vector = 8'b0;
Count = 0;

end

16

Timing Control Evaluation

/#5 C= A+B:

Assignment delay

1. Find procedural assignment
2. Wait 5 time units

3. Perform A+B

4. Wait 10 time units

5. Assign resultto C

= So, what is the difference between:

- #10 C = A+B and
- C = #10 A+BR?

17

Events and Walit

= Events mark changes in nets and registers, e.g.
raising/falling edge of clock.

- @ negedge means from any value to 0
- @ posedge means from any value to 1
— @ clk always activates when clock changes

= Wait statement:
—walit (condition) stmt;
" wait (EN) #5 C = A + B;
— waits for ENto be 1 before #5 C = A + B;
= Use wait to block execution by not specifying a
statement!

- wait (EN);

18

Sensitivity List

always (@ (sensitivity list) <begin> <procedural stments> <end>

always @ (posedge Clk or EN)
begin ... end

always @ (Sell,Sel2) // Verilog 2001 style
begin ... end

= Allows to suspend always blocks.

* Block executes and suspends until signal (one or more)
In sensitivity list changes.

= NOTE: OIld or notation is used to make statement
sensitive to multiple signals or events.
— (Don’t use sensitivity list to express a logical condition!)

= Common mistake:
— Forgetting to add relevant signals to sensitivity list!

19

Non-blocking Assignments

= Can be used to introduce concurrency into sequential
statements.

— Delay is counted down before assignment,
— BUT control is passed to next statement immediately.

= Non-blocking Assignments allow to model multiple
concurrent data transfers after common event.

— A blocking assignment would force sequential execution.

A<= #1 1; B <= #2 0; (non-blocking) A x 1
B x x

Time: 0 1

A=#11; B = #2 0; (blocking) A x 1
B x x

l_\

Time: O

o

=
[

N X%

)

o

20

Approaches to Assignment - |

reg [7:0] MyReg;
initial
fork
#50 MyReg
#100 MyReg
#150 MyReg =
#200 MyReg =
#250 S$finish;
join

8’ hFF;
8'h01;
8’ h2F;
8" h00;

= Concurrent but using blocking assignment (=)

Time: 0

50 100 150 200 250

MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

21

Approaches to Assignment - |l

reg [7:0] MyReg;
initial
begin /442//,
MyReg <= #50 8’'hFF; // pass control, wait, assign
MyReg <= #50 8’'h01;
MyReg <= #50 8'h2F;
MyReg <= #50 8'h00;
#250 $finish;
end

[Race Condition!]

= Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX 22 22 2?2 22 29

Important when driving input into a DUV in a testbench!

22

Approaches to Assignment - Il

reg [7:0] MyReg;
initial
begin
MyReg <= #50 8'hFF; // pass control, wait, assign
MyReg <= #100 8’h01;
MyReg <= #150 8'h2F;
MyReg <= #200 8'h00;
#250 S$finish;
end

= Sequential with non-blocking assignment (<=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

23

Approaches to Assignment - |V

reg [7:0] MyReg;

initial
begin
#50 MyReg = 8’'hFF; // wait, assign, pass control
#50 MyReg = 8’'h01;
#50 MyReg = 8'h2F;

#50 MyReg = 8’'h00;
#250 S$finish;
end

= Sequential with blocking assignment (=)
Time: 0 50 100 150 200 250
MyReg[7:0] XX FF 01 2F 00 00

Important when driving input into a DUV in a testbench!

24

HDL vs. Programming Languages

3 major new concepts of HDLs compared to PLs:

= Connectivity:

— Ability to describe a design using simpler blocks and then connecting
them together.

= Time:
— Can specify a delay (in time units of simulator): (WHY?)
» and #2 (Y3, In3, Sel1, Sel0);

= Concurrency is always assumed! (for structural style this is)

— No matter in which order primitives/components are specified, a change
in value of any input signal activates the component.

— If two or more components are activated concurrently, they perform
their actions concurrently.

— Order of specification does not influence order of activation!

— (NOTE: Statements inside behavioural blocks may be sequential -more
later.)

25

Tasks and Functions

Tasks and Functions

= Both are purely behavioural.
— Can’t define nets inside them.
— Can use logical variables, registers, integers and reals.

= Must be declared within a module.
— Are local to this module.
— To share tasks/functions in several modules, specify declaration
iIn separate module and use ‘include directive.
= Timing (simulation time)
— Tasks:
» No restriction on use of timing; engineer specifies execution.
— Functions:
= Execute in ZERO sim time units; no timing/event control allowed.

27

Example Task

task factorial;
output [31:0] £,
input [3:0] n;
integer count; // local variable
begin
f =1;
for (count=n; count>0; count=count-1)
f = f * count;
end
endtask

= |nvoke task: < task name > (list of arguments);
— Declaration order determines order of arguments when task is called!

28

Example Function

function ParityCheck;
input [3:0] Data;
begin
ParityCheck = "Data; // bit-wise xor reduction
end
endfunction

= Resultis by default a 1 bit register assigned to implicitly declared
local variable that has same name as function.

= Function calls:
— Are either assigned to a variable, or
— occur in an expression that is assigned to a variable,
— or occur as an argument of another function call.

29

Comparing Tasks with Functions

Tasks Functions
Timing can be non-zero sim execute in 0 sim time

time
Calling other | no limit; may not call tasks but may call
tasks or may enable functions another function
functions No recursion!
Arguments | any number; at least one input;

any type; no output/inout;

can’t return result always results in single return value
Purpose modularize code react to some input with single

response;
only combinatorial code;
use as operands in expressions

30

System Tasks and Functions

More than 100 Verilog system tasks/functions.

— (See Evita Verilog Reference Guide for more
information.)

Can be used in any module without explicit
iInclude directive.

Syntax: $< keyword >

Most important tasks for verification:
- $display, Smonitor

- $time, $stop, $finish

— (Also with files: $fopen, $fdisplay)

31

Summary

Evita Verilog Tutorial [Ch1-7]
Verilog HDL IEEE Standard 1364-2001

— Signals: internal and external (ports)

— Different coding styles:

= structural
= dataflow
= behavioural

SystemVerilog builds on IEEE 1364-2005

HDLs: Connectivity, Time and Concurrency
BOOK: Verilog HDL by Samir Palnitkar [in QB Library]

Next: Specification of Assignment 1!

32

