
COMS30026 Design Verification

Verification Tools

Department of
COMPUTER SCIENCE

Kerstin Eder
Trustworthy Systems Laboratory

(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

http://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

2

3

Functional Verification Approaches
Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode
Analysis

Dynamic Formal
Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation

4

Achieving Automation
Task of Verification Engineer:
§ Ensure product does not contain bugs - as fast and as

cost-effective as possible.
(... and of Verification Team Leader):

– Select/Provide appropriate tools.
– Select a verification team.
– Decide when cost of finding next bug violates law of

diminishing returns.
§ Parallelism, Abstraction and Automation can reduce the

duration of verification.
§ Automation reduces the human factor, improves

efficiency and reliability.

Verification TOOLS are used to achieve automation.
– Tool providers: Electronic Design Automation (EDA) industry

5

Tools used for Verification
§ Dynamic Verification:

– Hardware Verification Languages (HVL)
– Testbench automation
– Test generators
– Coverage collection and analysis
– General purpose HDL Simulators

§ Event-driven simulation
§ Cycle-based simulation (improved performance)
§ Waveform viewers (for debug)

– Hardware accelerators/emulators, FPGAs

§ Static Analysis / Verification Methods (Formal Methods):
– Linting Tools
– Equivalence checkers
– Model checkers

§ Property Specification Languages (ABV)
– Theorem provers

§ Administration:
– Version Control and Issue Tracking
– Metrics
– Data Management and Data Mining related to Metrics

§ Third Party Models

6

Linting Tools
§ Linters are static checkers.
§ Assist in finding common coding mistakes

– Linters exist for software and also for hardware design.
§ gcc -Wall (When do you use this?)

§ Linters only identify certain classes of problems
– Many false positives (i.e. false alarms) are reported.
– Use a filter program to reduce these.

§ Careful - don’t filter true positives though!

§ Linters can assist in enforcing coding guidelines!
– Rules for coding guidelines can be added to linter.

Is there any merit in using a linter alongside
simulation-based testing?

Tools for Simulation-
Based Verification

Simulators

Fundamentals of Simulation-based Verification

Driver
Checker

How do I
know when
I’m done?

§ Verification can be divided into two separate tasks
1. Driving the design - Controllability
2. Checking its behavior - Observability

§ Basic questions a verification engineer must ask
1. Am I driving all possible input scenarios?
2. How will I know when a failure has occurred?

§ Driving and checking are the yin and yang of verification
– We cannot find bugs without

creating the failing conditions
§ Drivers

– We cannot find bugs without
detecting the incorrect behavior
§ Checkers

What is a Testbench?
“Code used to create a predetermined input sequence to

a design, and to then observe the response.”
– Generic term used differently across the industry.
– Always refers to a test case/scenario.
– Traditionally, a testbench refers to code written in a Hardware

Description Language (VHDL, Verilog) at the top level of the design
hierarchy.

– A testbench is a “completely closed” system:
§ No inputs or outputs.
§ Effectively a model of the universe as far as the design is concerned.

Testbench

Driver CheckerDUV
collect the response and checkdrive stimulus into the DUV

Bugs in
the TB

Bugs in
DUV

Driver

Checker

10

Simulation-based Design Verification
§ Simulate the design (not the implementation) before fabrication.
§ Simulating the design relies on simplifications:

– Functional correctness/accuracy can be a problem.

Verification Challenge: ”What input patterns to supply to the Design
Under Verification (DUV) ...”

§ Simulation requires stimulus. It is dynamic, not just static!
§ Requires to reproduce the environment in which the DUV will be

used.
– Testbench (Remember: Verification vs Testing!)

11

Simulation-based Design Verification
§ Simulate the design (not the implementation) before fabrication.
§ Simulating the design relies on simplifications:

– Functional correctness/accuracy can be a problem.

Verification Challenge: ”What input patterns to supply to the Design
Under Verification (DUV) ...”

§ Simulation requires stimulus. It is dynamic, not just static!
§ Requires to reproduce the environment in which the DUV will be

used.
– Testbench (Remember: Verification vs Testing!)

Verification Challenge (continued): ”... and knowing what is expected
at the output for a properly working design.”

§ Simulation outputs are checked externally against the design
intent (i.e. against the specification)
– Errors cannot be proven not to exist!

“Testing shows the presence, not the absence of bugs.”
[Edsger W. Dijkstra]

see also the famous EWD manuscripts
(e.g. “The Humble Programmer” https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF)

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.cs.utexas.edu/users/EWD/
https://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF

12

General HDL Simulators
§ Most Popular Simulators in Industry

– Mentor Graphics ModelSim/Questa
– Cadence NCSim
– Synopsys VCS

§ Provide support for full language coverage
– "EVENT DRIVEN" algorithms

§ VHDL's execution model is defined in detail in the IEEE
LRM (Language Reference Manual)

§ Verilog's execution model was for a long time defined by
Cadence's Verilog-XL simulator ("reference
implementation"); it is now an IEEE standard, e.g.
Verilog 2005

13

Simulation based on Compiled Code
§ To simulate with ModelSim:

– Compile HDL source code into a library.
– Compiled design can be simulated.

Write
HDL
code

Compile
HDL
code

Simulate
the

design

HDL files HDL library

Compile Simulate

Correct
syntax errors

Debug
the

design

Two types of simulators:
event-based and

cycle-based

15

Event-based Simulators

Event-based simulators are driven based on
events. J

§ Outputs are a function of inputs:
– The outputs change only when the inputs do.
– The event is the input changing.
– An event causes the simulator to re-evaluate and

calculate new output.
§ Outputs (of one block) may be used as inputs (of

another) ...

16

Event Flow Example

Inputs Outputs

Block B Block C

B1

B2

C1

C2

C3 D

s1 s2
s3

s4

s5

s6
1

2

3

4

5

i1

i2

i3

i4

s7 s9

s10

s11

s12

s13

s8

17

Event-based Simulators
Event-based simulators are driven based on

events. J
§ Outputs are a function of inputs:

– The outputs change only when the inputs do.
– The event is the input changing.
– An event causes the simulator to re-evaluate and

calculate new output.
§ Outputs (of one block) may be used as inputs (of

another) ...
§ Re-evaluation happens until no more

changes propagate through the design.
§ Zero delay cycles are called delta cycles!

Delta Cycles
§ Event propagation may cause the assignment of new values after

zero delays.
– (Remember, this is only a model of the physical circuit.)

§ Although simulation time does not advance, the simulation
makes progress.

§ NOTE: Simulation progress is first along the zero/delta-time axis and
then along the simulation time axis.

D
el

ta
 T

im
e

Simulation
Time

event
It is possible to write

models that
unintentionally get

stuck in
delta cycles!

19

Event-Driven Simulation Principles
§ The event simulator maintains many lists:

– A list of all atomic executable blocks
– Fanout lists: A data structure that represents the

interconnect of the blocks via signals
– A time queue

§ records the points in time when events
happen

– Event queue
§ one queue pair for each entry in the time

queue
– Signal update queue
– Computation queue

§ The simulator needs to process all these queues
at simulation time.

Core Algorithm of an Event-Driven
Simulation Engine

Activate next
scheduled block

More Blocks
Scheduled?

Perform Signal Updates

1

2

3

Scheduling Data

Block/Signal Interconnect Topology
Event Data

no

yes

yes

More Blocks
Scheduled?

no

Increment
Model Time?

Done

Block Code
Block Function Execution

Schedule Signal Updates

call

return

Simulation Speed
What is holding us back?

Speedup strategies

22

Improving Simulation Speed

§ The most obvious bottle-neck for functional
verification is simulation throughput

§ There are several ways to improve throughput
– Parallelization
– Compiler optimization techniques
– Changing the level of abstraction
– Methodology-based subsets of HDL

§ Cycle-based simulation
– Special simulation machines

23

Parallelization

§ Efficient parallel simulation algorithms are hard
to develop
– Much parallel event-driven simulation research
– Has not delivered a breakthrough
– Hard to compete against "trivial parallelization"

§ Simple solution (brute force) – run independent
testcases on separate machines
– Workstation clusters called "Simulation Farms"
– 100s - 1000s of engineer's workstations run

simulations in the background

24

Compiler Optimization Techniques
§ Treat sequential code constructs like general

programming language
§ All optimizations for language compilers apply:

– Data/control-flow analysis
– Global optimizations
– Local optimizations (loop unrolling, constant propagation)
– Register allocation
– Pipeline optimizations
– etc.

§ Global optimizations are limited because of model-build
turn-around time requirements
– Example: modern microprocessor is designed with >1Million

lines of HDL
§ Imagine the compile time for a C-program with >1M lines!

25

Changing the Level of Abstraction
§ Cut down the number of scheduled events to

reduce simulation overhead
– Create larger sections of un-interrupted sequential

code
– Use less fine-grained model structure

→Smaller number of schedulable blocks
– Use higher-level operators
– Use zero-delay wherever possible

§ Data abstractions
– Use binary over multi-value bit values
– Use word-level operations over bit-level operations

Changing the Level of Abstraction

process (a, b)
begin

s(2 to 0) <= ('0' & a (1 to 0)) + ('0' & b(1 to 0));
sum_out(1 to 0) <= s(1 to 0);
carry_out <= s(2);

end process

s(0) <= a(0) xor b(0);
c(0) <= a(0) and b(0);
s(1) <= a(1) xor b(1) xor c(0);
c(1) <= (a(1) and b(1)) or (b(1) and c(0)) or (c(0) and a(1));
sum_out(1 to 0) <= s(1 to 0);
carry_out <= c(1);

s(2 to 0) <= ('0' & a (1 to 0)) + ('0' & b(1 to 0));
sum_out(1 to 0) <= s(1 to 0);
carry_out <= s(2);

27

Changing the Level of Abstraction
§ Scheduling the small blocks

– {A1, B1, A2, B2, A3, B3, A4, B4}
– Each small block is executed once

§ Scheduling the big blocks
– {A, B, A, B, A, B, A, B}
– A = A1 and A2 and A3 and A4
– Each small block is executed 4 times

A B

A1

A2

A3

A4

B1

B2

B3

B4

28

Changing the Level of Abstraction

Model granularity
Number of blocks

Perform
ance

Many tiny blocks:
High scheduling overhead

Few large blocks:
High re-scheduling overhead

Decreasing
Model Activity

Two types of simulators:
event-based and

cycle-based

Two types of simulators:
event-based and

cycle-based

31

Synchronous Design Methodology

§ The design is comprised of
– State-holding (storage) elements
– Combinational logic for state transition function

State-
Holding

Elements

Clock(s)

State Transition Function
(Combinational

Logic)

Primary inputs
Primary
outputs

32

Cycle-Based Model Build Flow
§ Language compile – synthesis-like process

– Simpler because of missing physical constraints
– Logic mapped to a non-cyclic network of Boolean

functions
– Hierarchy is preserved during language compilation

§ Flatten hierarchy – crush design hierarchy to
increase optimization potential

§ Optimization – minimize the size of the model to
increase simulation performance

§ Levelize logic
§ Translate to dedicated instructions

33

Levelized
Combinational Logic

Latches

A

B

C

Logic is ordered into levels so that the
order of evaluation is correct.
e.g., A and B are computed before C.

Model Build – Levelization

34

Translate to Instructions

and

a

b
and

xor
s(0)

c(0)

xor
xor =>

s(1) sum_out(1)

and

and
or

or

=>

=>

sum_out(0)

carry_out

c(1)

1

Load temp1, a(0)
Load temp2, b(0)
Xor temp1, temp2, temp3
Store temp3, s(0)
And temp1, temp2, temp3
Store temp3, c(0)
Load temp1, a(1)
Load temp2, b(1)
Xor temp1, temp2, temp3
…

We can convert every Boolean function
into a minimal set (~4 or better)

of dedicated instructions

1

2

3

1

2

3

35

§ Word-level operations can be easily parallelized

Is translated into

A(0 to 31) <= B(0 to 31) and C(0 to 31) and D(0 to 31)

Parallelism in Generated Code

LoadWord R1, B(0 to 31)
LoadWord R2, C(0 to 31)
AND R1, R1, R2
LoadWord R2, D(0 to 31)
AND R1, R1, R2
StoreWord R1, A(0 to 31)

36

Speed of Cycle-Based Simulation
§ Clock the design only as fast as the longest possible

combinational delay path settles before the cycle is over
§ Cycle time depends on the longest topological path

– Longest topological path can be calculated using static analysis
w/o using simulation -> stronger result w/o simulation patterns

and

xor
xor

and

and
or

or

clock cycle “duration”
depends on length of critical path

37

Hardware Acceleration

§ Programs created for cycle-based simulation are
very simple
– Small set of instructions
– Simple control – no branches, loops, functions

§ Operations at the same level can be executed in
parallel (Levelization)

§ Hardware acceleration exploit these facts for fast
simulation by utilizing
– Very large number of small and simple special-

purpose processors
– Efficient communication and scheduling

38

Scheduling Example

b

a

e
c

d

g i

f h

j

k l

EP4EP3EP2EP1

cdabStep1
efgStep2

hiStep3

kStep4

ljStep5

12 steps serial, 5 steps parallel

39

Accelerator Basic Structure

Logic Processing units (LPs):
These are special purpose processing units, that are much faster than CPUs.

40

Principle of Operation

§ Compiler transforms combinational logic
into Boolean operations

§ Compiler schedules inter-processor
communications using a fast broadcast
technique

§ Performance dictated by
– Number of processors (Logic Processing units)
– Number of levels in the design

41

Event-based Simulator 1

Cycle-based Simulator 20

Event-driven cycle Simulator 50

Acceleration 1000

Emulation 100000

Simulation Speed Comparison

42

Event-based Simulator 1

Cycle-based Simulator 20

Event-driven cycle Simulator 50

Acceleration 1000

Emulation 100000

Simulation Speed Comparison

Verification Languages
Raising the level of

abstraction

44

Verification Languages
§ Need to be designed to address verification principles.
§ Deficiencies in RTL languages (HDLs such as Verilog and

VHDL):
– Verilog was designed with focus on describing low-level hardware

structures.
§ No support for data structures (records, linked lists, etc).
§ Not object/aspect-oriented.

– Useful when several team members develop testbenches.
– VHDL was designed for large design teams.

§ Limitations of HDLs inhibit efficient implementation of
verification strategy.

§ High-level verification languages are (currently):
– System Verilog

§ IEEE 1800 [2005] Standard for System Verilog- Unified Hardware Design, Specification, and
Verification Language

– e-language used for Cadence’s Specman Elite [IEEE P1647]
– (Synopsys’ Vera, System C)

45

Features of High-Level Verification Languages

§ Raising the level of abstraction:
– From bits/vectors to high-level data types/structures

§ lists, structs, scoreboards including ready made functions to access these

§ Support for building the verification environment
– Enable testbench automation
– Modularity

§ Object/aspect oriented languages
§ Libraries (VIP) to enable re-use

§ Support for test generation
– Constrained random test generation features

§ Control over randomization to achieve the target values
§ Advanced: Connection to DUV to generate stimulus depending on DUV state

§ Support for coverage
– Language constructs to implement functional coverage models

46

Any other *verification* Languages?

Tommy Kelly, CEO of Verilab:
“Above all else, the Ideal Verification

Engineer will know how to construct
software.”

§ Toolkit contains not only
Verilog, VHDL,
SystemVerilog and e,
but also Python, Lisp,
mySQL, Java, ... J

(other)
Verification Tools

Waveform Viewers
Third Party Models

Metrics

48

Waveform Viewers
§ Waveform viewers often come as part of a simulator.
§ Most common verification tools used...

– Used to visually inspect design/testbench/verification environment.
– Recording waves decreases performance of simulator. (Why?)

§ Don’t use waveform viewers to determine whether the
DUV passes or fails a test.
– Why not?

§ Can use waveform viewer
for debugging.

– Sophisticated debuggers link
from the wave directly to the
source code and highlight the
related logic.

49

Third Party Models

§ Chip needs to be verified in its target environment.
– Board/SoC Verification

§ Do you develop or purchase behavioural models (specs)
for board parts?
– Buying them may seem expensive!
– Ask yourself:
“If it was not worth designing on your own to begin with, why

is writing your own model now justified?”
– The model you develop is not as reliable as the one you buy.
– The one you buy is used by many others - not just yourself.

§ Remember: In practice, it is often more expensive to
develop your own model to the same degree of
confidence than licensing one.

50

Third Party Models

§ Chip needs to be verified in its target environment.
– Board/SoC Verification

§ Do you develop or purchase behavioural models (specs)
for board parts?
– Buying them may seem expensive!
– Ask yourself:
“If it was not worth designing on your own to begin with, why

is writing your own model now justified?”
– The model you develop is not as reliable as the one you buy.
– The one you buy is used by many others - not just yourself.

§ Remember: In practice, it is often more expensive to
develop your own model to the same degree of
confidence than licensing one.

51

Metrics
§ Not really verification tools - but managers love

metrics and measurements!
– Managers often have little time to personally assess

progress.
– They want something measurable.

§ Coverage is one metric - will be introduced later.
§ Other metrics include, e.g.:

– Number of lines of code
– Ratio of lines of code

(between design and verification)
– Drop of source code changes
– Number of outstanding issues

Summary
§ Basic introduction to testbenches
We have studied
§ Verification Tools

– including an outlook on Verification Languages
§ Linting tools – static checkers
§ Simulators: event-based and cycle-based

– How to improve the performance of simulation-based
verification

– Compared the speed of different simulation
techniques

– Dangers of using waveform viewers as checkers

