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Outline

§ Observability and Controllability
– Black box, white box and grey box testing

§ Verification hierarchy
– Levels at which to perform verification



Observability 
and Controllability
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Observability and Controllability
§ Observability: Indicates the ease 

at which the verification engineer 
can identify when the design acts 
appropriately versus when it 
demonstrates incorrect behavior.

   

§ Controllability: Indicates the ease 
at which the verification engineer 
creates the specific scenarios that 
are of interest.
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Levels of Observability

§ Black Box

§ White Box

§ Grey Box

DUVInputs Outputs

Inputs OutputsDUV

Inputs OutputsDUV

Monitor
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Black Box Verification

§ The black box has inputs, outputs, and performs some (well 
documented) function.

§ To verify a black box, you need to understand the function.
§ The verification code utilizes only the external interfaces. 
§ The internal signals and state remain in the dark.
§ Pros:

– No knowledge of the actual implementation is required.
– Ability to predict functional results based on inputs alone ensures that the 

reference model remains independent from the DUV implementation.
– Verification code is less sensitive to changes inside the DUV.

§ Cons:
– Difficult to locate source of problem, only exposes effects. (If at all! Remember, 

not all bugs propagate to the outputs.)
– Lacks controllability and observability.

DUVInputs Outputs
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White Box Verification

(Opposite of black-box approach.)

§ For white box verification the internal facilities of the DUV are 
known, visible and utilised for verification.

§ Pros:
– Full visibility and controllability of internal signals.

§ Can identify and cover corner cases.
§ Can detect bugs as soon as they occur.

– Quickly possible to set up interesting conditions, e.g. counter roll-over.
§ Cons:

– Danger to follow the implementation/design instead of the specification.
– Sensitive to changes in the DUV (implementation).
– Too many details make it hard to create and maintain.

Inputs OutputsDUV
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Grey Box Verification

§ For grey box verification a limited number of DUV facilities are 
utilised in a mostly black-box environment.
– Access important and stable features, the rest is kept in the dark.

§ Combines the pros (if done the right way) or the cons (if done the 
wrong way) of black and white box.
– Progression from black box to grey box should be carefully planned and 

started only when the DUV is sufficiently stable.
§ In practice: Most verification environments are grey box.

– May need to start with black box with planned evolution into grey 
box.

– Note: Prediction of correct results on an interface is occasionally 
impossible without viewing an internal signal.

Inputs OutputsDUV

Monitor
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Levels for Controllability 

§ Black Box

§ Grey Box

§ White Box

DUVInputs Outputs

Inputs OutputsDUV

DUVInputs Outputs

Driver

DUV

Watch out for 
unreachable states!

Watch out for 
unreachable states!
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§ In theory, the same levels as for observability 
also exist for controllability:
– black, grey and white box

§ In practice:
– We seldom control the internals of the DUV.
– This may drive the design into a state that is            

not reachable under normal circumstances.
– It may thus lead to an inconsistent DUV state.

§ The main exception: Warm Loading
– Brings the DUV to a predefined interesting state.

§ E.g. cache initialization, almost full buffer
– Reduces the time needed for reaching this state.

Be careful with White Box Controllability



Verification Hierarchy
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Verification Hierarchy

§ Today’s complex chips and systems are divided 
into logical units
– Usually determined during specification / high-level 

design
– Usually follow the architecture of the system
– This practice is called hierarchical design

§ Hierarchical design allows a designer to 
subdivide a complex problem into more 
manageable blocks
– The design team combines these blocks to form 

bigger units, and continues to merge/integrate these 
blocks until the chip or system is complete
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Pros and Cons of Hierarchical Design

§ Pros
– Breaks the design into manageable pieces
– Allow designers to focus on single function / 

aspect of the design

§ Cons
– More interfaces to specify / design / verify
– Integration issues
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Levels of Verification

§ Verification usually adapts to and takes 
advantage of the hierarchical design stages and 
boundaries

§ Common levels of verification
– Designer level (block level)
– Unit level
– (Core level)
– Chip level
– System level
– Hardware / software co-verification
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Designer (Block) Level Verification

§ Used for verification of single blocks and 
macros

§ Usually, done by the designer him/herself
§ Main goal – Sanity checking and 

certification for a given block
§ Ranges from a simple test of basic 

functionality to complete verification 
environments

§ The common level for formal verification
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Unit Level Verification

§ A set of blocks that are designed to handle 
a specific function or aspect of the system
– E.g., memory controller, floating-point unit

§ Usually there is a formalized spec
– More stable interface and function

§ The target of first serious verification effort
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Core Level Verification

§ A core is a unit or set of units designed to 
be used across many designs
– Well defined function
– Standardized interfaces

§ Verification needs to be thorough and 
complete
– Address all possible uses of the core

§ The verification team can use “Verification 
IP” for the standardized interfaces



18

Chip Level Verification

§ Verification of a set of units that are 
packaged  together in a physical entity

§ Main goals of verification
– Connection and integration of the various 

units
– Verify functions that could not be verified at 

lower levels
§ Need verification closure to avoid 

problems at tape-out 
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System Level Verification

§ The purpose of this level of verification is 
to confirm 
– Interconnection
– Integration
– System design

§ Verification focuses on the interactions 
between the components of the system 
rather then the functionality of each 
individual component
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HW / SW Co-Verification

§ Marries the system-level hardware with 
the code that runs on it

§ Combines techniques from the hardware 
verification and software testing domains

§ This combination creates many issues
– Different verification / testing techniques
– Different modes of operation
– Different speed

§ Beyond the scope of this course



21

total

Verification at different Design Levels
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total

Verification at different Design Levels

Operating 
System and
 Application 
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system
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top

system
Main lesson:
Only move up to 

the next level 
when the number 
of bugs found at 

the current, lower, 
level has started 

to drop. 
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Which Level To Choose?
§ Always choose the lowest level that 

completely contains the target function 
under verification

§ Each verifiable piece should have its own 
specification 

§ Function to be verified may dictate the 
appropriate level for verification 

§ The selected level must provide suitable 
controlability and observability to perform 
verification
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Which Levels to Verify?

§ In general, each level that is exposed to 
the “outside world” is mandatory
– For example, chip level, system level

§ The rest depends on many factors
– Complexity
– Risk
– Schedule
– Resources
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Summary

We have investigated
§ Observability and 

Controllability
– Black box, white box and 

grey box testing
§ Verification hierarchy

– Levels of verification
– Importance of selecting 

the appropriate level for 
verification

Always 
choose the 
lowest level 

that 
completely 

contains the 
target function 

under 
verification.
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Next
§ Recordings of lectures (about 2h - 3h per week)

Week 1: 
ü Introduction to Design Verification
üVerification Hierarchy
üDriving & Checking

– uobdv.github.io/Design-Verification/                     
shows a weekly schedule of topics to watch 
BEFORE the next session, ideally

– Recordings are available from Blackboard unit page

§ Tasks for you this week:
– Attend the lab session on Thursday to set up 

access to the EDA tools
– Paper review “The limits of correctness”

https://uobdv.github.io/Design-Verification/
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Paper review
Brian Cantwell Smith. 1985. The limits of correctness. 

SIGCAS Comput. Soc. 14,15, 1,2,3,4 (Jan 1 1985), 18–26. 
DOI: https://doi.org/10.1145/379486.379512 

– Identify the main lines of argument
– Why does the author question the notion of 

“correctness”?
– What are the two or three key take-away messages 

for you?

https://doi.org/10.1145/379486.379512
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Opportunities

https://www.tessolve.com/dvclub-europe-october-2024-cocotb-2-0-modernize-your-testbenches-for-even-more-productivity/ 

Tuesday, 8th October 2024 | 12:00-13:00 BST
Cocotb 2.0: Modernize your testbenches for even more productivity

https://www.tessolve.com/dvclub-europe-october-2024-cocotb-2-0-modernize-your-testbenches-for-even-more-productivity/
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Reconvergence Models – another example
§ In SW development, the transformative process from specification to 

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification

Source 
Code

Machine 
Code

Programming
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This slide is intentionally 
left blank for you to take 
some time to attempt the 

task on the 
reconvergence model on 

programming J

Please do not proceed until you’ve tried 
– you’ll learn more if you try. 
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Reconvergence Models – another example
§ In SW development, the transformative process from specification to 

source code is “programming”. 
§ The compiler then translates source code to machine code.

Compilation
Specification Machine 

Code

Programming

§ If your program does not work, why could this be?
§ Bugs in the programming
§ Bugs in the compiler
§ Misunderstanding of the specification
§ .... <What else?>

Source 
Code



35

Reconvergence Models – another example
§ In SW development, the transformative process from specification to 

source code is “programming”. 
§ The compiler then translates source code to machine code.

Compilation
Specification Machine 

Code

Programming

§ If your program does not work, why could this be?
§ Bugs in the programming
§ Bugs in the compiler
§ Misunderstanding of the specification
§ .... <What else?>

Source 
Code

Verification Verification

Verification


