
COMS30026 Design Verification
Verification Hierarchy

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

2

Outline

§ Observability and Controllability
– Black box, white box and grey box testing

§ Verification hierarchy
– Levels at which to perform verification

Observability
and Controllability

4

Observability and Controllability
§ Observability: Indicates the ease

at which the verification engineer
can identify when the design acts
appropriately versus when it
demonstrates incorrect behavior.

§ Controllability: Indicates the ease
at which the verification engineer
creates the specific scenarios that
are of interest.

5

Levels of Observability

§ Black Box

§ White Box

§ Grey Box

DUVInputs Outputs

Inputs OutputsDUV

Inputs OutputsDUV

Monitor

6

Black Box Verification

§ The black box has inputs, outputs, and performs some (well
documented) function.

§ To verify a black box, you need to understand the function.
§ The verification code utilizes only the external interfaces.
§ The internal signals and state remain in the dark.
§ Pros:

– No knowledge of the actual implementation is required.
– Ability to predict functional results based on inputs alone ensures that the

reference model remains independent from the DUV implementation.
– Verification code is less sensitive to changes inside the DUV.

§ Cons:
– Difficult to locate source of problem, only exposes effects. (If at all! Remember,

not all bugs propagate to the outputs.)
– Lacks controllability and observability.

DUVInputs Outputs

7

White Box Verification

(Opposite of black-box approach.)

§ For white box verification the internal facilities of the DUV are
known, visible and utilised for verification.

§ Pros:
– Full visibility and controllability of internal signals.

§ Can identify and cover corner cases.
§ Can detect bugs as soon as they occur.

– Quickly possible to set up interesting conditions, e.g. counter roll-over.
§ Cons:

– Danger to follow the implementation/design instead of the specification.
– Sensitive to changes in the DUV (implementation).
– Too many details make it hard to create and maintain.

Inputs OutputsDUV

8

Grey Box Verification

§ For grey box verification a limited number of DUV facilities are
utilised in a mostly black-box environment.
– Access important and stable features, the rest is kept in the dark.

§ Combines the pros (if done the right way) or the cons (if done the
wrong way) of black and white box.
– Progression from black box to grey box should be carefully planned and

started only when the DUV is sufficiently stable.
§ In practice: Most verification environments are grey box.

– May need to start with black box with planned evolution into grey
box.

– Note: Prediction of correct results on an interface is occasionally
impossible without viewing an internal signal.

Inputs OutputsDUV

Monitor

9

Levels for Controllability

§ Black Box

§ Grey Box

§ White Box

DUVInputs Outputs

Inputs OutputsDUV

DUVInputs Outputs

Driver

DUV

Watch out for
unreachable states!

Watch out for
unreachable states!

10

§ In theory, the same levels as for observability
also exist for controllability:
– black, grey and white box

§ In practice:
– We seldom control the internals of the DUV.
– This may drive the design into a state that is

not reachable under normal circumstances.
– It may thus lead to an inconsistent DUV state.

§ The main exception: Warm Loading
– Brings the DUV to a predefined interesting state.

§ E.g. cache initialization, almost full buffer
– Reduces the time needed for reaching this state.

Be careful with White Box Controllability

Verification Hierarchy

12

Verification Hierarchy

§ Today’s complex chips and systems are divided
into logical units
– Usually determined during specification / high-level

design
– Usually follow the architecture of the system
– This practice is called hierarchical design

§ Hierarchical design allows a designer to
subdivide a complex problem into more
manageable blocks
– The design team combines these blocks to form

bigger units, and continues to merge/integrate these
blocks until the chip or system is complete

13

Pros and Cons of Hierarchical Design

§ Pros
– Breaks the design into manageable pieces
– Allow designers to focus on single function /

aspect of the design

§ Cons
– More interfaces to specify / design / verify
– Integration issues

14

Levels of Verification

§ Verification usually adapts to and takes
advantage of the hierarchical design stages and
boundaries

§ Common levels of verification
– Designer level (block level)
– Unit level
– (Core level)
– Chip level
– System level
– Hardware / software co-verification

15

Designer (Block) Level Verification

§ Used for verification of single blocks and
macros

§ Usually, done by the designer him/herself
§ Main goal – Sanity checking and

certification for a given block
§ Ranges from a simple test of basic

functionality to complete verification
environments

§ The common level for formal verification

16

Unit Level Verification

§ A set of blocks that are designed to handle
a specific function or aspect of the system
– E.g., memory controller, floating-point unit

§ Usually there is a formalized spec
– More stable interface and function

§ The target of first serious verification effort

17

Core Level Verification

§ A core is a unit or set of units designed to
be used across many designs
– Well defined function
– Standardized interfaces

§ Verification needs to be thorough and
complete
– Address all possible uses of the core

§ The verification team can use “Verification
IP” for the standardized interfaces

18

Chip Level Verification

§ Verification of a set of units that are
packaged together in a physical entity

§ Main goals of verification
– Connection and integration of the various

units
– Verify functions that could not be verified at

lower levels
§ Need verification closure to avoid

problems at tape-out

19

System Level Verification

§ The purpose of this level of verification is
to confirm
– Interconnection
– Integration
– System design

§ Verification focuses on the interactions
between the components of the system
rather then the functionality of each
individual component

20

HW / SW Co-Verification

§ Marries the system-level hardware with
the code that runs on it

§ Combines techniques from the hardware
verification and software testing domains

§ This combination creates many issues
– Different verification / testing techniques
– Different modes of operation
– Different speed

§ Beyond the scope of this course

21

total

Verification at different Design Levels

Operating
System and
 Application

S/W

system

top

unitunit

Bugs
found

Time

top
system

Volume
of testing

Time

unit

top

system

22

total

Verification at different Design Levels

Operating
System and
 Application

S/W

system

top

unitunit

Bugs
found

Time

top
system

Volume
of testing

Time

unit

top

system
Main lesson:
Only move up to

the next level
when the number
of bugs found at

the current, lower,
level has started

to drop.

23

Which Level To Choose?
§ Always choose the lowest level that

completely contains the target function
under verification

§ Each verifiable piece should have its own
specification

§ Function to be verified may dictate the
appropriate level for verification

§ The selected level must provide suitable
controlability and observability to perform
verification

24

Which Levels to Verify?

§ In general, each level that is exposed to
the “outside world” is mandatory
– For example, chip level, system level

§ The rest depends on many factors
– Complexity
– Risk
– Schedule
– Resources

25

Summary

We have investigated
§ Observability and

Controllability
– Black box, white box and

grey box testing
§ Verification hierarchy

– Levels of verification
– Importance of selecting

the appropriate level for
verification

Always
choose the
lowest level

that
completely

contains the
target function

under
verification.

26

Next
§ Recordings of lectures (about 2h - 3h per week)

Week 1:
ü Introduction to Design Verification
üVerification Hierarchy
üDriving & Checking

– uobdv.github.io/Design-Verification/
shows a weekly schedule of topics to watch
BEFORE the next session, ideally

– Recordings are available from Blackboard unit page

§ Tasks for you this week:
– Attend the lab session on Thursday to set up

access to the EDA tools
– Paper review “The limits of correctness”

https://uobdv.github.io/Design-Verification/

27

Paper review
Brian Cantwell Smith. 1985. The limits of correctness.

SIGCAS Comput. Soc. 14,15, 1,2,3,4 (Jan 1 1985), 18–26.
DOI: https://doi.org/10.1145/379486.379512

– Identify the main lines of argument
– Why does the author question the notion of

“correctness”?
– What are the two or three key take-away messages

for you?

https://doi.org/10.1145/379486.379512

28

Opportunities

https://www.tessolve.com/dvclub-europe-october-2024-cocotb-2-0-modernize-your-testbenches-for-even-more-productivity/

Tuesday, 8th October 2024 | 12:00-13:00 BST
Cocotb 2.0: Modernize your testbenches for even more productivity

https://www.tessolve.com/dvclub-europe-october-2024-cocotb-2-0-modernize-your-testbenches-for-even-more-productivity/

29

30

31

32

Reconvergence Models – another example
§ In SW development, the transformative process from specification to

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification

Source
Code

Machine
Code

Programming

33

This slide is intentionally
left blank for you to take
some time to attempt the

task on the
reconvergence model on

programming J

Please do not proceed until you’ve tried
– you’ll learn more if you try.

34

Reconvergence Models – another example
§ In SW development, the transformative process from specification to

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification Machine

Code

Programming

§ If your program does not work, why could this be?
§ Bugs in the programming
§ Bugs in the compiler
§ Misunderstanding of the specification
§ <What else?>

Source
Code

35

Reconvergence Models – another example
§ In SW development, the transformative process from specification to

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification Machine

Code

Programming

§ If your program does not work, why could this be?
§ Bugs in the programming
§ Bugs in the compiler
§ Misunderstanding of the specification
§ <What else?>

Source
Code

Verification Verification

Verification

