
COMS30026 Design Verification

Fundamentals of
Simulation-based Verification

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

Outline

§ Fundamentals of Simulation-based
Verification:
– Strategy

§ Driving principles
§ Checking strategies

– Working example
§ A circular buffer
https://en.wikipedia.org/wiki/Circular_buffer

Driver

Checker

https://en.wikipedia.org/wiki/Circular_buffer

3

Strategy of Verification

§ Verification can be divided into two
separate tasks
1. Driving the design - Controllability
2. Checking its behavior - Observability

§ The basic questions a verification
engineer must ask
1. Am I driving all possible input scenarios?
2. How will I know when a failure has occurred?

4

Strategy of Verification

§ Verification can be divided into two
separate tasks
1. Driving the design - Controllability
2. Checking its behavior - Observability

§ The basic questions a verification
engineer must ask
1. Am I driving all possible input scenarios?
2. How will I know when a failure has occurred?

5

Strategy of Verification

§ Verification can be divided into two
separate tasks
1. Driving the design - Controllability
2. Checking its behavior - Observability

§ The basic questions a verification
engineer must ask
1. Am I driving all possible input scenarios?
2. How will I know when a failure has occurred?

6

The Yin-Yang of Verification

§ Driving and checking are the yin and yang
of verification
– We cannot find bugs without

creating the failing conditions
§ Drivers

– We cannot find bugs without
detecting the incorrect behavior
§ Checkers

Driver

Checker

7

Comments on Yin and Yang
§ This perfect harmony does not always exist

– Not all failing conditions are equal
§ Same bug can lead under different failing conditions to

different failures (with big difference in consequences)
– We cannot (or don’t want to) detect all incorrect

behaviors
§ Some are not important enough
§ For others we have safety nets

8

Comments on Yin and Yang
§ This perfect harmony does not always exist

– Not all failing conditions are equal
§ Same bug can lead under different failing conditions to

different failures (with big difference in consequences)
– We cannot (or don’t want to) detect all incorrect

behaviors
§ Some are not important enough
§ For others we have safety nets

§ The right balance is a function of the level of
verification and the verification objectives
– Consider, e.g. Block vs Chip level verification

§Both differ in the focus of verification, so
the drivers and checkers will be different.

Example
Black Box DUV

10

The Black Box Example

§ What does it mean to
– Drive all input scenarios
– Know when the design fails

Design Under
Verification

(DUV)
Inputs Outputs

11

Verification of the Black Box
§ Black box since we don’t look inside it

– What does this mean?
§ The black box may have a complete documentation

… or not
§ To verify a black box the verification engineer must

– understand the function and be able to
– predict the output based on the inputs.

§ It is important that the verification team obtain the
input, output and functional description of the black
box from a source other than the HDL designer
– Standard specification
– High-level design
– Other designer that interfaces with the black box
– …

Driving

13

Driving the Black Box

§ We can start planning the stimuli even before
the complete specification of the DUV is given

§ The definition of the inputs can provide
information and hints on
– The interface
– The functionality

§ This information can lead to first set of stimuli
§ More stimuli will be added as we learn more

details on the DUV

14

Driving the Black Box

DUV
Inputs Outputs

in_buf_valid is on if data is valid
in_buf_data<0:7> is the data to be placed in the stack

clean_stack will invalidate the entire stack

pop_buf<0:1> directs the logic to pop the top 0,
1, or 2 entries from the stack the next cycle

15

What Can We Learn From This?
§ We can build up an understanding of the

design just from the input descriptions:
– What do we know?

§ ...<fill this in, please>
§ ...
§ ...

– What don’t we know?
§ ...<fill this in, please>
§ ...
§ ...

16

What can we set up?

§ Writing to the stack
– Back-to-back writes
– Long sequences of writes

§ Reading from the stack
– All three possible reads (0, 1, 2 reads)
– Back-to-back and long sequences

§ Corner cases
– Reading from an empty stack (and almost empty)
– (Writing to a full stack (and almost full))

§ Combinations and scenarios
– Two or three of read, write, clean

17

What can we set up?

§ Writing to the stack
– Back-to-back writes
– Long sequences of writes

§ Reading from the stack
– All three possible reads (0, 1, 2 reads)
– Back-to-back and long sequences

§ Corner cases
– Reading from an empty stack (and almost empty)
– (Writing to a full stack (and almost full))

§ Combinations and scenarios
– Two or three of read, write, clean

It is critically
important
that we

record any
assumptions

we have
made so that

we can
check them
against the

specification
when it

becomes
available.

Checking

19

Where do Checkers come from?
§ In microelectronic system design there are

five main sources of checkers
– The inputs and outputs of the design

(specification)
– The architecture of the design
– The microarchitecture of the design
– The implementation of the design
– The context of the design (up the hierarchy)

§ Note that the source of checkers and their
implementation are two different issues
– The source provides us with inspiration and ideas, the

implementation is the realization of these.

20

Checking Based On the DUV I/O

§ Check the output signals of the DUV based on
– The input signals
– Understanding of the specification of the DUV

DUV
DUV(Input) = Output

DUV Function

Inputs Outputs

21

Checking Based On the DUV I/O

§ The most basic type of checking
– relevant for HW and SW alike

§ Must be present unless we are certain that this
type of checking is covered by other types of
checking

§ The checker need not (and should not) imitate the
design

§ Checking is easier than implementing the DUV
– Can use higher level of abstraction
– Need to verify the outputs instead of generating them

§ Verification should not enforce, expect nor rely on
an output being produced at a specific clock cycle

(Why not?)

22

Checking Based On the Architecture
Example instruction stream:

SUB R7 R1 R2
BRZ R7 L

Architectural (ISA-level) checking is abundant.
§ The SUB and BRZ instructions are defined in the

Instruction Set Architecture (ISA).
§ e.g. the (2000+ page) Arm v8-M Architecture

Reference Manual is available online at
https://developer.arm.com/documentation/

§ or, more locally, the XMOS xCORE-200 ISA can be
downloaded from https://www.xmos.ai/file/xs2-isa-specification/

§ Architecture may define that instructions must complete
in order, e.g. the results of SUB must be used by BRZ.

Many checkers have their roots in the Architecture
of the design!

https://developer.arm.com/documentation/
https://www.xmos.ai/file/xs2-isa-specification/

23

Checking Based On the Architecture
Example instruction stream:

SUB R7 R1 R2
BRZ R7 L

Architectural (ISA-level) checking is abundant.
§ The SUB and BRZ instructions are defined in the

Instruction Set Architecture (ISA).
§ e.g. the (2000+ page) Arm v8-M Architecture

Reference Manual is available online at
https://developer.arm.com/documentation/

§ or, more locally, the XMOS xCORE-200 ISA can be
downloaded from https://www.xmos.ai/file/xs2-isa-specification/

§ Architecture may define that instructions must complete
in order, e.g. the results of SUB must be used by BRZ.

Many checkers have their roots in the Architecture
of the design!

https://developer.arm.com/documentation/
https://www.xmos.ai/file/xs2-isa-specification/

24

Checking Based On the Microarchitecture

Instruction
Issue

Fixed Float Branch Store

Superscalar Pipeline

Stall

Example instruction stream:
SUB R7 R1 R2
BRZ R7 L

Execution

WriteBack, i.e.
put-away results

cy
cl

es

No-Stall

General Purpose Registers R0-R15

SUB R7

BRZ R7

The rules on how instructions are
issued depend upon how many

pipelines are defined as well as the
resources in the design.

25

Checking Based On the Microarchitecture

Instruction
Issue

Fixed Float Branch Store

Superscalar Pipeline

Stall

Example instruction stream:
SUB R7 R1 R2
BRZ R7 L

Execution

WriteBack, i.e.
put-away results

cy
cl

es

No-Stall

General Purpose Registers R0-R15

SUB R7

BRZ R7

The rules on how instructions are
issued depend upon how many

pipelines are defined as well as the
resources in the design.

The ability or
inability of on-

the-fly results to
feed prior

stages of a
pipeline will

affect
instruction

issue.

26

§ Check that architectural and
microarchitectural mechanisms in the DUV
are operating as expected
– Buffers: overflow and underflow
– Invalid states and transitions in state machines
– Pipelines
– Reorder buffers
– Writeback and forwarding logic

§ performance enhancing features
– …

Checking Based On the
Architecture and Microarchitecture

27

Checking Based On the Implementation

§ Check items that are related to specific
implementation details
– Cyclic buffers for queues
– Pipeline buffer stages
– …

28

Checking Based On the Design Context

§ When verifying lower levels of hierarchy such as individual
blocks of HDL, the verification engineer derives checkers
from an understanding of the function, properties, and
context of the larger design, e.g. from how the blocks will
be used in the context of the design.

HDL A HDL B

Higher level of design hierarchy

X Y Y Z

Back to our example
Black Box DUV

30

Output Definition of the Black Box

DUV
Inputs

out_buf_data1<0:8>, out_buf_data2<0:8> are the
requested data lines.
Bit 8 of both signals are the valid bits.

buf_overrun indicates that the last input was not
added to the stack due to an overrun

buf_full indicates that the buffer is currently full
and that any new entries will be dropped

31

What Can We Learn From This?

§ The outputs give an insight into the
scenarios we need to create.
– What more do we know?

– Which
information is
still needed?

32

Documentation Reveals
§ The stack is 7 entries deep.
§ The data items become valid (for reading) one cycle after

they have been written.
§ We can read and write at the same time.
§ No data is returned for a read if the stack is empty.
§ Cleaning takes one cycle.

– During that time we cannot read or write.
– Inputs arriving with a clean command are ignored.

§ The clean command turns the valid bit off on all 7 entries.
§ The buf_full signal is valid one cycle after the buffer is filled.

– This is why we need the buf_overrun signal.
§ The “stack” is a FIFO.

33

What Can We Learn From This?

§ The documentation has provided more
understanding of the black box DUV.
– What more do we know?

§ ...
– Which information is still needed?

§

§ At this stage we may need some
consultations with architects and
potentially with designers to gain further
understanding of the black box DUV.

Ideas for Checkers of the Black Box
Checker implementationChecker SourceChecker

A fundamental check on the black box is that the returned
data matches the sent data. The verification code must keep
an independent copy of all DUV data in order to check the
data outputs coming from the design.

Inputs and Outputs,
Architecture

The design
returns the
correct data

The verification code must keep a count of how much data is
in the design. This allows prediction and checking of the
buf_full and buf_overrun outputs.

Microarchitecture /
InternalsBuffer overflow

The design description stipulates that the driver may read
data from the design the cycle after it sends it. Therefore,
the verification team should write a checker to verify that the
data is not valid too early/late and that it can be read the
following cycle.

Microarchitecture /
Internals

Data becomes
valid at the right

time

The out_buf_data wires should never contain valid data
unless the driver performed a read and there was data in the
design. Similarly, the buf_full and buf_overrun wires should
only be active during a full or overrun condition.

Design contextCheck all outputs
all of the time

Ideas for Checkers of the Black Box
Checker implementationChecker SourceChecker

A fundamental check on the black box is that the returned
data matches the sent data. The verification code must keep
an independent copy of all DUV data in order to check the
data outputs coming from the design.

Inputs and Outputs,
Architecture

The design
returns the
correct data

The verification code must keep a count of how much data is
in the design. This allows prediction and checking of the
buf_full and buf_overrun outputs.

Microarchitecture /
InternalsBuffer overflow

The design description stipulates that the driver may read
data from the design the cycle after it sends it. Therefore,
the verification team should write a checker to verify that the
data is not valid too early/late and that it can be read the
following cycle.

Microarchitecture /
Internals

Data becomes
valid at the right

time

The out_buf_data wires should never contain valid data
unless the driver performed a read and there was data in the
design. Similarly, the buf_full and buf_overrun wires should
only be active during a full or overrun condition.

Design contextCheck all outputs
all of the time

Ideas for Checkers of the Black Box
Checker implementationChecker SourceChecker

A fundamental check on the black box is that the returned
data matches the sent data. The verification code must keep
an independent copy of all DUV data in order to check the
data outputs coming from the design.

Inputs and Outputs,
Architecture

The design
returns the
correct data

The verification code must keep a count of how much data is
in the design. This allows prediction and checking of the
buf_full and buf_overrun outputs.

Microarchitecture /
InternalsBuffer overflow

The design description stipulates that the driver may read
data from the design the cycle after it sends it. Therefore,
the verification team should write a checker to verify that the
data is not valid too early/late and that it can be read the
following cycle.

Microarchitecture /
Internals

Data becomes
valid at the right

time

The out_buf_data wires should never contain valid data
unless the driver performed a read and there was data in the
design. Similarly, the buf_full and buf_overrun wires should
only be active during a full or overrun condition.

Design contextCheck all outputs
all of the time

37

HDL Implementation of the Black Box

next_
write

next_
read

validdata
§ The actual implementation of

the design in the black box
example might be a circular
buffer:
– Logic required to determine if

design is full or empty:
next_read and next_write
and potentially a counter

– valid bits need to be
implemented

– Wrap conditions need to be
implemented to achieve a
circular buffer.

38

...and the Checking Counterpart

Do not imitate the HDL, i.e. the
implementation

– Use a simple linked list with a head and a tail
– Counter is inc/dec as the driver sends/requests

data
§ Much simpler
§ Can predict behavior exactly

§ We need high-level verification
languages to specify the design intent:
– Expressive, flexible and declarative
– Allow abstraction from implementation detail

next_
read

next_
write

counter

…

Bug Hunting

Driver

Checker

Remember, to find a bug you
need both, driving & checking:

– Your driver must create the
failing scenario, and

– Your checker must flag the
behaviour mismatch.

40

Bug hunting…(I)
Given this bug in our simple stack:

(Which of course is never “given”... ;)

§ When clean_stack = 1, the data valid bits should all be cleared.
§ The next_write pointer and next_read pointer are supposed to be set

to the top of the stack.

BUT:

§ If the in_buf_valid = 1 (with data) is on in the same cycle as the
clean_stack, the logic puts the data in the stack but resets the
pointers as intended.

§ This only occurs when the stack has 6 valid entries, because the
bug is in the logic that is trying to set the buf_full output.

So, somewhere in the stack, there is a valid bit == 1 that should
not be on.

But,where?

41

... resulting in this situation L
§ This only occurs when

the stack has 6 valid
entries, because the
bug is in the logic that
is trying to set the
buf_full output.

§ The new data item is
therefore put into the
7th data slot with the
valid bit set to 1.

next_
write

next_
read

validdata

data 1

0
0

0
0
0
0

-

-
-

-
-
-

42

Bug hunting… (II)

1. There must be 6 valid
entries.

2. Send a clean and a data
entry on the same cycle.

What will it take to create a scenario that
uncovers this bug?

43

Bug hunting… (II)

1. There must be 6 valid
entries.

2. Send a clean and a data
entry on the same cycle.

3. Start sending new entries.
– We need to send at least 6

new entries in order to move
the pointers to the valid
entry that shouldn’t be valid.

Driving designs into corner cases can be quite
difficult!

What will it take to create a scenario that
uncovers this bug?

44

Bug hunting… (III)

What do you have to check to find this bug?
§ This bug could manifest itself in a few ways:

– The buf_full comes on because the next write points
to a valid entry.

– Read returns data when no data should be returned.
– buf_overrun comes on too soon, as the write pointer

detects that it is pointing to a valid entry when another
write comes on.

45

Bug hunting… (III)

What do you have to check to find this bug?
§ This bug could manifest itself in a few ways:

– The buf_full comes on because the next write points
to a valid entry.

– Read returns data when no data should be returned.
– buf_overrun comes on too soon, as the write pointer

detects that it is pointing to a valid entry when another
write comes on.

§ Which of the above may occur depends on the
actual implementation, e.g. the control logic that
sets the full and overrun signals.

46

Reflections on our bug hunting

§ The chances that the verification engineer would
think of such a scenario (without knowing about
the bug) are slim.

§ Part of the problem is the need to flush the
erroneous state to the observed output.

§ The probability of detecting the bug should
increase if we could detect it earlier:
– Reduce the probability of erasing the erroneous state
– Reduce the probability of keeping it hidden

§ For this we need better observability!
– Levels of observability: black box, grey box, white box

47

Driver

Checker

Summary
Verification Engineers need to be inquisitive.
§ Identify interesting driving scenarios.
§ Find sources for checkers:

– I/O, design context, uarch, architecture and implementation.
§ Familiarize yourself with the specification of the design.
§ Don’t take understanding for granted. If in doubt - ask!
§ Work in close collaboration with architects/designers.
§ Don’t re-implement the design - abstract, ... cheat, ...

– Behavioural models are allowed to “cheat”.
§ Return random data (e.g. memory modelling)
§ Look ahead in time
§ Predetermine answers

§ Select the right level for verification.

Driving & Checking: You need
both (SKILLS) to uncover bugs!

