
Introduction to
Design Verification

COMS30026

Kerstin Eder

Trustworthy Systems Lab

http://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

What is
Design Verification?

3

What is Design Verification?

“Design Verification is the process used to
gain confidence in the correctness of a

design w.r.t. the requirements and
specification.”

Types of verification:
§ Functional verification
§ Timing verification
§ ...
§ What about performance?

44

5

Verification vs Validation
§ Verification:

– Confirms that a system has a given input /
output behaviour, sometimes called the
transfer function of a system.

§ Validation:
– Confirms that the system’s transfer function

results in the intended system behaviour when
the system is employed in its target
environment, e.g. as a component of an
embedded system.

§ Validation is sometimes used when verification is meant.

Verification in the IC
Design Process

7

The IC Design Process

Mask
DataLayout

Transistor-
Level
Model

Design
Library

Gate-Level
Model

RTL
Model

Behavioral
Model

Micro
Architectural

Design

Architectural
Specification

Concept

Functional Verification Equivalence
Checking

Analysis of
Timing/Power

synthesis

custom
design

Performance Verification

Functional verification aims to demonstrate
that the functional intent of a design is

preserved in its implementation.

8

Chip Design Process
General

 Specification and
Architecture

High Level
Chip Design

HDL Implementation
(Logic Design)
at RTL Level

Physical Circuit
Design via Synthesis

Or Custom Layout Design sent
To Fab

Customer
Requirements

Fabricated
Chip

Functional
VerificationFixes To HDL

High Level
Verification

Result: Description
with all details for

fabrication (tape-out).
In practice, all ”steps”
start (almost) at the

same time - they run in
parallel!

9

Why is Verification important?
§ Verification is the single biggest lever to

effect the triple constraints:
– Quality

§ A high quality track record preserves revenue and reputation.
§ Ideally a team can establish a “right-first-time” track record.

– Cost
§ Fewer revisions through the development/fabrication process

means lower costs.
§ Respinning a chip costs hundreds of thousands of £/$/€

+ the associated “lost opportunity” costs.

– Timing/Schedule
§ Fewer revisions through the development/fabrication process

means faster time-to-market.
§ Respinning a chip costs 6-8 weeks at least

+ the associated “lost opportunity” costs.

All about Bugs
Types of bugs

How are bugs introduced?
How can bugs be found?

11

Why do Designs have Bugs?

12

Solution

Why do Designs have Bugs?

Problem

Design the
HW

Develop a
computational

solution Manufacture
the HW

13

Manufacture
the HW

Design the
HW

Solution

Why do Designs have Bugs?

Problem

Develop a
computational

solution

Domain knowledge errors

Architectural errors

Mis-interpreation of the

specification
Algorithmic errors

Specification errors

Manufacturing errors

System failure

User errors

Microarchitectural errors
Coding errorsRace conditions

Inadequate performance

Communication errors

Specification too vague
Ambigious specification

Copy & paste errors

Interface errors

Protocol errors
Deadlocks

Timing errors

Performance errorsIntegration errors
Livelocks

14

Design the
HW

Solution

Why do Designs have Bugs?

Problem

Develop a
computational

solution
Manufacture

the HW

Domain knowledge errors

Architectural errors

Mis-interpreation of the

specification
Algorithmic errors

Specification errors

Manufacturing errors

System failure

User errors

Microarchitectural errors
Coding errorsRace conditions

Inadequate performance

Communication errors

Specification too vague
Ambigious specification

Copy & paste errors

Interface errors

Protocol errors
Deadlocks

Timing errors

Performance errorsIntegration errors

The
human

dimension

15

Bug found
early has
little cost.

Bug found
at chip level

has
moderate

cost.

Bug found
on system
test floor
requires
respin of
the chip.

Huge
costs are

associated
with

finding a
bug in your
customer’s

environ-
ment.

Mask
costs

Time

Cost of Bugs over Time
Cost of
bugs

Initial Design Chip System Customer

Number of
bugs found

The longer a bug goes undetected,
the more expensive it is!

Remember the Intel Pentium FDIV bug!
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

16

Mask costs (Electronics Weekly, 10 October 2007)

17

Bug found
early has
little cost.

Bug found
at chip level

has
moderate

cost.

Bug found
on system
test floor
requires
respin of
the chip.

Huge
costs are

associated
with

finding a
bug in your
customer’s

environ-
ment.

Mask
costs

Time

Cost of Bugs over Time
Cost of
bugs

Initial Design Chip System Customer

Number of
bugs found

The longer a bug goes undetected,
the more expensive it is!

Loss of
Reputation

Recall
cost

Debug
cost

Late to
market

cost

Lost
opportunity

cost

Remember the Intel Pentium FDIV bug!
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

http://en.wikipedia.org/wiki/Pentium_FDIV_bug

18

Increasing Design Complexity

19

Increasing Design Complexity

Multiple Power Domains, Security, Virtualisation
Nearly five million lines of code to enable Media gateway

Video
Display TV

Decode

Wireless xDSL

µC
MPEG

Processing
Core

Baseband Signal
Processor

OFDM
Modem

Processor
5-10K

Lines of
Microcode

>100K Lines
of Appl S/W

20-50K Lines
of Protocol

F/W

5-10K Lines
of Control

Code

250-500K
Lines of F/W

Over 2M Lines
of Application

S/W

50-100K
Lines of

Protocol F/W

250-300K
Lines of DSP

F/W

Up to 2M
Lines of

Network S/W

20

Increasing Design Complexity: Moor’s Law
ITRS Edition 2009, Design Chapter (http://www.itrs.net/ and http://www.itrs2.net/)

– Hardware and Software Design Gaps versus Time

http://www.itrs.net/
http://www.itrs2.net/

21

Increasing Design Complexity: Moor’s Law
ITRS Edition 2009, Design Chapter (http://www.itrs.net/ and http://www.itrs2.net/)

– Hardware and Software Design Gaps versus Time

Is Moore’s
Law a law of

physics?

http://www.itrs.net/
http://www.itrs2.net/

22

Increasing Design Complexity: Moor’s Law
ITRS Edition 2009, Design Chapter (http://www.itrs.net/ and http://www.itrs2.net/)

– Hardware and Software Design Gaps versus Time

Getting it right (first time) is more and more difficult:
– rapidly increasing design complexity
– tight “time-to-market” constraints

http://www.itrs.net/
http://www.itrs2.net/

23

Shorter Time-To-Market Windows

6 12 18 24

Shipment windows: 90s

Shipment windows: early 2000s
Shipment windows: today

Months

Volume

Design

C
on

fid
en

ce

Time Scheduled tapeout

Time

95%+

Desired

24

Shorter Time-To-Market Windows

Risks
Quality

Predictability
Productivity

Actual

6 12 18 24

Shipment windows: 90s

Shipment windows: early 2000s
Shipment windows: today

Months

Volume

Design

C
on

fid
en

ce

Time Scheduled tapeout

Time

Final tapeout

95%+

Desired

26

Role of Verification in IC Design
IC design process is complex:
§ Engineers need to balance conflict of interest:

– Tight time-to-market constraints vs. increasing design complexity
§ Aim: “Right-first-time” design, “correct-by-construction”
§ More and more time-consuming to obtain acceptable

level of confidence in correctness of design!
§ design time << verification time

– Up to 70% of design effort can go into verification.
– 80% of all written code is often in the verification environment.
– Remember: Verification does not create value!

§ But it preserves revenue and reputation!
– Properly staffed design teams have

dedicated verification engineers.
– In some cases verification engineers

outnumber designers 2:1.

27

Increasing Verification Productivity
Need to minimise verification time e.g. by using:
§ Parallelism: Add more resources
§ Abstraction:

– Higher level of abstraction (i.e. C vs Assembly)
– This often means a reduction of control!

§ Automation:
– Tools to automate standard processes.
– Requires standard processes/methodology.
– Usually a variety of functions, interfaces, protocols, and

transformations must be verified.
– Not all (verification) processes can be automated.

Productivity improvements drive early problem
discovery!

28

Increasing Verification Productivity

Time

Total
Number
of Bugs
found Test

Verification

Productivity improvements drive
early problem discovery

29

Summary so far …
§ What is Design Verification?

– Why do we care?
– Verification vs validation

§ Bugs
– Sources of bugs
– Cost of bugs
– Importance of Design Verification

§ The chip design process
– Where does Verification “fit”?
– Intel Fab Tour:

§ https://www.youtube.com/watch?v=2ehSCWoaOqQ
§ https://www.youtube.com/watch?v=JBYHwRXmEhY
§ https://www.youtube.com/watch?v=BtFdraQWVtM

§ Impact of increasing design complexity
– ITRS
– Shrinking time to market windows
– Need to increase productivity

Design
verification is the
process used to

gain confidence in
the correctness of
a design w.r.t. its
requirements and

specification.

https://www.youtube.com/watch?v=2ehSCWoaOqQ
https://www.youtube.com/watch?v=JBYHwRXmEhY
https://www.youtube.com/watch?v=BtFdraQWVtM

What are you
going to verify?

32

Chip Design Process
General

 Specification and
Architecture

High Level
Chip Design

HDL Implementation
(Logic Design)
at RTL Level

Physical Circuit
Design via Synthesis

Or Custom Layout Design sent
To Fab

Customer
Requirements

Fabricated
Chip

Functional
VerificationFixes To HDL

High Level
Verification= =

= Result: Description
with all details for

fabrication (tape-out).
In practice, all ”steps”
start (almost) at same

time - they run in
parallel!

=

33

How do Designers know whether
a circuit is correct?

TEST: What was manufactured is what you taped out

Concept

Specification

HDL Design (RTL)

Tape-out

Silicon

VERIFY: What you taped out is what the RTL describes

VERIFY: What you designed is what you specified

VERIFY: What you specified is what you envisioned

There is skill, science and methodology behind verification.

34

Reconvergence Models [Bergeron]

Conceptual representation of the verification process
§ Most important question:

What are you verifying?

§ Purpose of verification is to ensure that the result of
some transformation is as intended or as expected.

Transformation

Verification

35

Verification vs. Test
§ Often confused in the context of HW design!

– Purpose of test is to show design was manufactured properly.
– Verification is done to ensure that design meets its functional

intent prior to manufacture!

Fabrication
Specification

Netlist

Silicon
Chip

HW Design

Verification Test

36

Design for Test
§ One method employed during the test phase to

facilitate testing is scanning
– Link all internal registers together into a chain.
– Chain accessible from chip pins.
– Allows control/observation of internal state.
– Impacts area of design, but keeps testing cost down.

§ This results in a
”Design for Test”
methodology

§ Why not ”Design for Verification”? [Hot topic of research!]

– @ design time, consider: What is the design supposed
to do? How will this be verified?

Figure from the
book “Writing

Testbenches” by
J. Bergeron

37

Formal: Equivalence Checking
Compares two models to check for equivalence.
§ Proves mathematically that both are logically equivalent.

– Commonly used on lower levels of design process.
§ Example: RTL to Gates (Post Synthesis)

38

The IC Design Process

39

Equivalence Checking

Conceptually, we are asking the question:
 “Is there an input vector such that
 the output of the XOR gate can be 1”?

F

G

Inputs xorOutputs

40

Formal: Equivalence Checking
Compares two models to check for equivalence.
§ Proves mathematically that both are logically equivalent.

– Commonly used on lower levels of design process.
§ Example: RTL to Gates (Post Synthesis)

Equivalence Check

Why do equivalence checking when EDA tools exist for
synthesis?

Synthesis

RTL Gates

§ See ”HDL Chip Design - A Practical Guide for Designing, Synthesising, and
Simulating ASICs and FPGAs using VHDL or Verilog” book by Douglas Smith page
136 and compare MUX spec with what they claim will be synthesised!

41

Cost of Verification

Necessary Evil
§ Always takes too long and costs too much.
§ As number of bugs found decreases, cost and time of

finding remaining ones increases.
So when is verification done? (Will investigate this later!)

– Remember: Verification does not generate revenue!

Yet indispensable
§ To create revenue, design must be functionally correct

and provide benefits to customer.
§ Proper functional verification demonstrates

trustworthiness of the design.
§ Right-first-time designs demonstrate professionalism

and ”increase” reputation of design team.

42

Verification is similar to statistical hypothesis testing

No Bugs found

Bugs found

Good Design
(no bugs in design)

Bad Design
(buggy design)

Hypothesis ”under test” is: The design is functionally correct, i.e.
 there are no bugs in the design.

43

Verification is similar to statistical hypothesis testing

No Bugs found

Bugs found Type I:
False Positive

Type I mistakes (“convicting the innocent”, a “false alarm”):
- Easy to identify - found error where none exists.

Good Design
(no bugs in design)

Bad Design
(buggy design)

Hypothesis ”under test” is: The design is functionally correct, i.e.
 there are no bugs in the design.

44

Verification is similar to statistical hypothesis testing

Hypothesis ”under test” is: The design is functionally correct, i.e.
 there are no bugs in the design.

No Bugs found

Bad Design
(buggy design)

Good Design
(no bugs in design)

Type II:
False Negative

Bugs found Type I:
False Positive

Type I mistakes (“convicting the innocent”, a “false alarm”):
- Easy to identify - found error where none exists.

Type II mistakes (“letting the criminal walk free”, a “miss”):
- Most serious - verification failed to identify an error!
- Can result in a bad design being shipped unknowingly!

45

Summary
§ What is Design Verification?

– Why do we care?
– Verification vs validation

§ Bugs
– Sources of bugs
– Cost of bugs
– Importance of Design Verification

§ Impact of increasing design complexity
– ITRS
– Shrinking time to market windows
– Increasing Productivity

§ The chip design process
– Where does Verification “fit”?

§ Reconvergence Models
– Help us identify what is being verified

Reconvergence
models are the
starting point for
any verification

activity!
When asked to

verify something,
first draw a

reconvergence
model and see
whether you’ve

got all you need to
perform

verification!

46

Next
§ Recordings of lectures (about 2h - 3h per week)

Week 1:
ü Introduction to Design Verification
üVerification Hierarchy
üDriving & Checking

– uobdv.github.io/Design-Verification/
shows a weekly schedule of topics to watch
BEFORE the next session, ideally

– Recordings are available from Blackboard unit page

§ Tasks for you this week:
– Attend the lab session on Thursday to set up

access to the EDA tools
– Paper review “The limits of correctness”

https://uobdv.github.io/Design-Verification/

47

Paper review
Brian Cantwell Smith. 1985. The limits of correctness.

SIGCAS Comput. Soc. 14,15, 1,2,3,4 (Jan 1 1985), 18–26.
DOI: https://doi.org/10.1145/379486.379512

– Identify the main lines of argument
– Why does the author question the notion of

“correctness”?
– What are the two or three key take-away messages

for you?

https://doi.org/10.1145/379486.379512

48

Opportunities

https://www.tessolve.com/dvclub-europe-october-2024-cocotb-2-0-modernize-your-testbenches-for-even-more-productivity/

Tuesday, 8th October 2024 | 12:00-13:00 BST
Cocotb 2.0: Modernize your testbenches for even more productivity

https://www.tessolve.com/dvclub-europe-october-2024-cocotb-2-0-modernize-your-testbenches-for-even-more-productivity/

49

50

51

52

Reconvergence Models – another example
§ In SW development, the transformative process from specification to

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification

Source
Code

Machine
Code

Programming

53

This slide is intentionally
left blank for you to take
some time to attempt the

task on the
reconvergence model on

programming J

Please do not proceed until you’ve tried
– you’ll learn more if you try.

54

Reconvergence Models – another example
§ In SW development, the transformative process from specification to

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification Machine

Code

Programming

§ If your program does not work, why could this be?
§ Bugs in the programming
§ Bugs in the compiler
§ Misunderstanding of the specification
§ <What else?>

Source
Code

55

Reconvergence Models – another example
§ In SW development, the transformative process from specification to

source code is “programming”.
§ The compiler then translates source code to machine code.

Compilation
Specification Machine

Code

Programming

§ If your program does not work, why could this be?
§ Bugs in the programming
§ Bugs in the compiler
§ Misunderstanding of the specification
§ <What else?>

Source
Code

Verification Verification

Verification

