
Test and Verification Solutions

SoC Verification
Mike Benjamin

Associate at TVS

2 Test and Verification Solutions

What is SoC level?

• Top level
 Looking at the complete design

• System Level
 Putting the complete design in a
 wider context …

System architecture

Partner IP

Software

3 Test and Verification Solutions

What does a simple SoC look like?

7-stages
Integer pipeline

3-Port Register File

Debug Support Unit

Interrupt
Controller

AMB AHB Master (32 bit)

Trace Buffer

Debug Support

Interrupt Port

IEEE-754 FPU

Co-Processor

HW Mul/Div

Local I-RAM I-Cache Local D-RAM

AHB Master I/F

D-Cache

Interconnects IP

Peripherals
à register map

Memory
à memory map

Debug
support •  Reset Clocks •  Interrupts

‘Infrastructure’:

CPU

4 Test and Verification Solutions

Why write SoC level tests?

§  Some top level functionality not visible at unit level

§  Allows verification to focus on actual use model

§  Missing system level functionality & compliance testing

•  Imported IP
•  Signal connectivity

•  Register / address mapping

•  Power on / reset •  Power management
•  Clocking strategy

•  Performance verification

•  Benchmarking •  Coherence?

•  Configurability / parameterized blocks instantiated!
•  Testing restricted to real use model

•  Generate typical/worst case waveforms for power analysis!

•  Partner IP
•  Software •  System architecture

5 Test and Verification Solutions

Why bother doing unit level testing?

§  Controllability at top level v unit level?
 à REDUCED

§  Visibility at top level v unit level?

 à REDUCED

§  Overhead on testing at top level v unit level?

 à INCREASED

•  Harder to hit corner case and longer run times

•  Harder to debug fails

•  Need to propagate block level fixes/changes to
 top level before they can be tested
•  Need to understand the complete SoC to test
 and debug a single block

•  Need working top level integration before testing

6 Test and Verification Solutions

Barriers to top level testing

§  Barriers to top level verification?

§  Solutions?

Complexity of building the complete top level design
Late availability of key blocks / functionality

Size of full top level design

Limited controllability of the design from outside

Limited visibility inside design

Difficulty of anyone understanding the complete design

S1:
S2:
S3:
S4:
S5:
S6:

B1:
B2:
B3:
B4:
B5:
B6:

Require changes to be co-ordinated between dependent blocks

A schedule defining milestones for delivering features

Regression testing before changes are committed

Ensure major interfaces are stable and well defined

Black box some components

Replace components with abstract models or BFMs (eg: CPU, memories)

7 Test and Verification Solutions

Reuse from unit level?

§  VIP
–  BFMs
–  Monitors and scoreboards
–  Protocol checkers

§  Assertions
§  Functional coverage points
§  Tests

–  Integration tests
§  Connectivity, address mapping

–  Stress tests
§  Cross cutting concerns such as interrupts or power management
§  Shared resources or ‘convergence points’ (eg: memory synchronisation)

–  Right level of abstraction
§  Transactions and/or bus accesses
§  Relative address map

Need to
plan for
reuse!

8 Test and Verification Solutions

What do our top level tests contain?

§  Halt mechanism

main(){
 report_start();
 leon3_test(1, 0x80000200, 0);
 irqtest(0x80000200);
 gptimer_test(0x80000300, 8);
 gpio_test(0x80000700);
 report_end();}

int gpio_test(int addr)
{
pio = (int *) addr;
int mask;
int width;

report_device(0x0101a000);
pio[3] = 0; pio[2] = 0; pio[1] = 0;
pio[2] = 0xFFFFFFFF;

/* determine port width and mask */
mask = 0; width = 0;

while(((pio[2] >> width) & 1) && (width <= 32)) {
 mask = mask | (1 << width);
 width++;}

pio[2] = mask;
if((pio[0] & mask) != 0) fail(1);
pio[1] = 0x89ABCDEF;
if((pio[0] & mask) != (0x89ABCDEF & mask)) fail(2);
pio[2] = 0;

return width;}

§  Trace and error reporting

§  Interrupt handling

§  Result checking
§  Register / address map
§  Component tests

§  Tests are typically C
programs running on an
SoC CPU

§  Loaded into SoC memory

9 Test and Verification Solutions

How to check the test results

§  Fail causes test to hang
§  Dump results to memory and compare to

reference results from model
–  mpeg decoder video stream
–  reference simulator

§  Explicit checks in the test
–  Observe and count interrupts
–  Check data values

§  Trace comparison
–  Compare simulation state to a reference model cycle

by cycle during the simulation
§  Use of monitors, scoreboards or assertions

Sensitive to accuracy
of reference model
(especially timing)

Need error propagated
to end of test

10 Test and Verification Solutions

Methodology for top level testing

1.  Pipe cleaning flow with regression tests
à to verify basic functionality is not broken

2.  Incremental test set verifying the subsets of functionality
à scope grows with successive builds

3.  Architectural and conformance tests
4.  Micro-architectual tests
5.  Soak testing
6.  Performance testing and benchmarking

11 Test and Verification Solutions

Adding Coverage

Instruction
Set

Simulator
(ISS)

Coverage
Database

Tests

Parse &
Decode

Coverage Base
Classes

(ISA view of resources)

Coverag
e Grids

Execution
Trace

Coverage Model
Why add coverage?

•  Conformance testing:

• Need complete coverage of cases

•  Targeting specific scenarios:
• Hitting required corner cases

• Soak testing
•  Ensure testing is not becoming
repetitive

12 Test and Verification Solutions

How to further increase the ‘stress’

§  Build multiple configurations (set at build time)
–  Increase stress by maximising corner cases

eg: small memories or FIFOs
–  Increase stress my maximising ‘synchronisation points’

eg: shared resources or coherent memories

§  Chicken bits (set at start of test)
–  Turn features on or off (can be verification specific or used to

minimise design risk by disabling potentially risky optimisations)

§  Hot load (set at start of test)
–  Can force states of part of the design into conditions that maximise

chance of hitting corner conditions early (most often hot load
caches but can also leave holes or create dirty entries)

§  Use of irritators (set during test)
–  Hardware/DMA data transfers/traffic generators and BFMs

(bursts of traffic and corner cases for transaction timing)

13 Test and Verification Solutions

The New Verification Challenges of Low Power Design

§  Why does low power matter?
–  Battery life eg: mobile devices
–  Operating temperature and cooling requirements eg: automotive, data centres

§  How to achieve low power?
–  Dynamic power = switching flops
–  Static power = leakage current

§  Minimize Switching by Design
–  Clock gating: Inferred (by synthesis) and architectural

§  Turn off units (eg: run fast then stop)
–  Multiple power domains and power modes managed by a ‘Power Management Unit’ (PMU)
–  System level (eg: ARM big.LITTLE architecture)

§  Some of the new Verification challenges
–  Ensure correct state retention and restoration when switching a power domain.
–  Clamping inactive signals at the boundary of a power domain
–  Ensure the design doesn’t try to use a unit that is (being) switched off!
–  Can the design get stuck in a power mode?

 eg: interacting state machines restored to states that cause deadlock or livelock
–  Errors in the sequences of save and restore operations performed by the PMU
–  Interaction of the power modes with chip level power on, off and reset!

Energy
efficiency Power

dissipation

Turn off!

Minimise
switching

14 Test and Verification Solutions

Power Aware Simulation

§  Need to tell your RTL simulations about low power intent
§  A common description shared between simulation, synthesis and layout

§  Two competing standards: UPF and CPF
–  Both extend the functional description without changing the existing RTL

§  What they describe…
–  Power domains, supply rails and switches eg:

create_power_domain pdA –include_scope moduleA
Create_supply_net RETENTION –domain pdA

–  State retention and isolation
–  System power states

… the number of state combintions can be large!

§  For an RTL simulation ‘OFF’ means
–  All ‘OFF’ registers are corrupted
–  Any signals driven by logic that is ‘OFF’ are corrupted
–  No evaluation of logic that is ‘OFF’

§  Can also describe other features…
–  Multi-voltage designs and level shifters
–  Voltage and frequency scaling

Retention registers
have separate

supplies

Isolation cells
have separate

supplies

15 Test and Verification Solutions

Time

Cost of
bugs

 Initial Design Chip System Customer

Number of
bugs found

How do
you

decided
when you
are done?

How do
you find

the
remaining

bugs?

Cost of bugs over time (revisited)

16 Test and Verification Solutions

Being pro-active to improve verification

§  Achieving the best possible test plan
–  Methodical analysis of design specifications and extraction of features
–  Brainstorming and reviewing within the development team
–  Refinement and maintenance throughout the development process
–  Tracking and sign-off of verification deliverables against the test plan

§  Make the design ‘verification friendly’ (design for verification)
(High quality products are a combination of robust and extensive verification with good design practices)

–  Ensure good visibility of architectural and micro-architectural corner cases
–  Avoid unnecessary functional complexity eg: excessive configurability, irregular structures
–  Understand the verification impact of design changes (eg: code churn during optimization)
–  Designers document their intent and assumptions, especially at interface between units
–  Ensure the architecture, specifications and design are as stable as possible

Communicate!
(Verification is not just the responsibility of verification Engineers)

–  Engage closely with the designers
–  Be an active participant in reviews
–  Take every opportunity to get the widest possible input into verification planning

Verification Requirements
Specification

17 Test and Verification Solutions

Is block and top level verification sufficient?

§  Is block level and top level verification sufficient?
–  Verification of IP in System context
–  Verifying correct operation with related IP
–  Verification of complete systems (both HW and SW)

§  Software conformance testing
§  Soak testing

§  Soak testing at system level?
–  Focus at system level is shared resources

eg: coherent memory system

–  Running irritator software in parallel on multiple threads or
multiple CPUs (minimal OS)

–  Switching CPUs (eg: swapping big/LITTLE)
–  Virtualisation

18 Test and Verification Solutions

What goes wrong at system level?

§  Integration bugs
–  Connecting a big-endian subsystem to a little-endian

sub-system

§  Clocks and power
–  System hangs following mode change

§  Concurrency and shared resources
–  Concurrent memory gets corrupted

§  Performance
–  Bus bandwidth and latency is much worse than predicted

19 Test and Verification Solutions

How to go faster!
Compute Farm, Emulators, FPGA and test chips

20 Test and Verification Solutions

The ‘tradeoffs’ for different platforms

Compute farm Emulator FPGA Test chip

Speed 10Hz - 100Hz
…per machine

1MHz 2MHz – 50MHz GHz

Observability Total Trace window +
host debug

Probes +
host debug

Host debug

Behavioural
testbench?

Yes Co-emulation
(speed penalty)

Co-emulation
(speed penalty)

No

Test in ‘real world’
systems

No Host debug +
ICE with speed
bridges

Mostly Yes

Are fails easily
reproducible in
simulation?

Yes Yes No No

Bring-up time Minutes Weeks à hours Weeks à Days Months

Partitioning!

Favours lots of
short tests!

Depends on
process maturity

Complex timing dependencies

… but also need to load tests
and dump test results!

21 Test and Verification Solutions

Summary

§  What is SoC level verification? (Top v System)

§  Looked at structure of a simple SoC

§  Why do both ‘SoC level’ & ’unit level’ verification?

§  A methodology for SoC level verification
§  System level verification

If time permits ….
§  RIS (Random Instruction Stream) Test Generators

§  Looked at IP-XACT

22 Test and Verification Solutions

Top Level Test Generation

§  Bias tests to hit interesting
corner cases

–  Scenario interleaving
–  Target shared resources/’points

of convergence’
§  Non-repetitive useful tests
§  There should be an efficient

workflow
–  Generation performance
–  Target diverse platforms
–  Ease of use
–  Maintainability
–  Reuse (of testing knowledge)
–  Effective result checking:

§  Propagation of results
§  Trace comparison

Testbench
SoC

CPU

A

Mem.

B C

FABRIC
FABRIC

BFM BFM

Scenario
Test

Compiler
flow

Observe
results

Test
generator

C
overage

Expected
results

23 Test and Verification Solutions

‘Point solutions’ for test generation
Memory Coherence

§  Time sharing a resource (memory)
–  Coherency
–  Memory protection

§  Most interesting cases are overlapping
accesses

§  Colliding access can be:
 Write||Write, Write||Read, Read|| Read
eg: PowerPC: ‘store quadword’ || ‘load quadword’

§  True sharing: same memory
§  False sharing: close enough to

interfere
(eg: same cache line)

§  MP memory model can have weak
ordering (with barriers)
(W(a,d1) || W(a,d2)) à M(a) = {d1, d2}

thread 2

CPU A
thread 1

CPU B

fabric

Exclusive
CPU B

Shared

Unchecked

Exclusive
CPU A, thread 1

24 Test and Verification Solutions

A general purpose test generator for CPUs

§  Constraints (relations between attributes)
 eg: source.address = base.data+displacement.data

 PageCross(source.address)
–  hard or soft?

§  Typically several weakly coupled constraints
§  Randomize all other parameters and events

eg: cache event in parallel with load
§  Huge domains (eg: 2^64 address and data)
§  Randomly sample solution space

§  As resources are ‘used up’ it can become
harder to solve constraints. Solutions are:
§  Register reloading
§  Backtrack and retry

§  Generating loops is a challenge:
§  Procedure calls
§  Recurring interrupts
§  Self modifying code
à Prevent random re-entrant code

Memory access
instruction type

Load word

Base
register Offset

Source Target
register

Test generator

Architectural description
Architecture specific knowledge

Constraint
solver

Architecture
independent
knowledge

Test
template

Test
program

Reference
Simulator

Modelling
Engineer

Verification
Engineer

25 Test and Verification Solutions

Model Based Test Generation for SoCs?

§  Provides ‘system level’ abstraction
§  Aids modelling testing knowledge
§  Test case language
§  Clear separation between system modelling and test description

eg: different SMP clusters will have same interactions and components and only the configuration will change

§  Expects a separate checking mechanism

XGEN

Component types

Configuration

Interactions

Testing knowledge

Test request

Test case

Abstract test

Generation Engine

Refinement

•  Ports with properties
(eg: address, access size)
•  Internal state defined by
 resources
(eg: registers, memory, …)
•  Behaviour defined by
constraints between port
properties and internal state

Instantiates components,
defines connections,
sets static component
characteristics
eg: address map

Sequence of transactions
possibly involving several
components

eg: a collision mechanism
that biases test cases

towards reuse of certain
system resources

26 Test and Verification Solutions

IP-XACT

IP-XACT is:
§  A standard XML scheme for describing components and connections.
§  It describes things like interfaces (<spirit:busInterfaces>) and registers

(<spirit:memoryMaps>) rather than function!

Tools can then generate and manipulate the metadata:
§  Packagers: Generate ‘sound’ meta data for components
§  Generators: Configure components where IP blocks and the design may both have

generic parameters
§  Assemblers & SoC design tools: Create an IP-XACT description of the design that

can be used to automatically stitch together the components

Why is it useful to have a standard for documenting IP?

•  Vendor neutral: exchange libraries and combine components from
 multiple sources
•  Allows automation of SoC and test bench assembly
 … a manual process is very error prone as number of components increases!

•  Provides a common specification that can be shared between:
 SoC design, verification, software and documentation teams

27 Test and Verification Solutions

IP-XACT example: IP register description

reserved
Field

‘full’
Field

‘empty’

Access

Read/Write or Read Only?

Width

31
Field offset

1 0

Name

STATUS FLAGS
Address

Ox03
Reset value
Ox01

spirit:access

spirit:size

spirit:address offset

spirit:reset
spirit:value

spirit:mask

spirit:field

spirit:bitWidth

spirit:bitOffset

enumeratedValues

Value Name

0 NOT_FULL

1 FULL

28 Test and Verification Solutions

IP-XACT example: Code

<spirit:register>
 <spirit:name> STATUS_FLAGS</spirit:name>
 <spirit:description> Register contains flags to report if FIFO empty or full </spirit:description>
 <spirit:dim>1</spirit:dim>
 <spirit:size>32</spirit:size>

 <spirit:access>read-write</spirit:access>
 <spirit:reset>
 <spirit:value>1</spirit:value>
 <spirit:mask>3</spirit:mask>
 </spirit:reset>
 <spirit:field>
 <spirit:name>EMPTY</spirit:name>
 <spirit:description>FIFO empty flag</spirit:description>
 <spirit:bitOffset>0</spirit:bitOffset>
 <spirit:bitWidth>1</spirit:bitwidth>
 <spirit:access>read-only</spirit:access>
 </spirit:field>
 <spirit:field>
 <spirit:name>FULL</spirit:name>
 <spirit:description>FIFO full flag</spirit:description>
 <spirit:bitOffset>1</spirit:bitOffset>
 <spirit:bitWidth>1</spirit:bitwidth>
 <spirit:access>read-only</spirit:access>
 </spirit:field>

</spirit:register>

