
COMS30026 Design Verification

Functional Formal
Verification

Department of
COMPUTER SCIENCE

Kerstin Eder
Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

(Acknowledgement: I gratefully acknowledge the support from Cadence who provide the licenses for the Formal
Verification Tool demonstration. Special thanks also to Anton Klotz from the Cadence Academic Network.)

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

2

Functional Verification Approaches
Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode
Analysis

Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation

3

Functional Verification Approaches
Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode
Analysis

Dynamic Formal
Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation

Hybrid

4

Formal Property Checking
Properties of a design (aka assertions) are

formally proven or disproved.
§ Used to complement simulation-based verification.
§ Usually employed at lower levels in the design hierarchy.

Give a
reconvergence model

for
formal property checking!

A reconvergence
model is a
conceptual

representation of
the verification

process.
It helps us

understand what
is being verified.

5

Reconvergence Model for
Formal Property Checking

RTLSpecification

RTL CodingInterpretation

6

Reconvergence Model for
Formal Property Checking

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.

RTLSpecification

RTL CodingInterpretation

7

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.

RTLSpecification

Interpretation

RTL CodingInterpretation

Reconvergence Model for
Formal Property Checking

8

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.

RTLSpecification

Interpretation
Properties

(Assertions)

RTL CodingInterpretation

Property
Formalization

Reconvergence Model for
Formal Property Checking

9

under env_constraint if condition then expectationunder env_constraint if condition then expectation

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.

RTLSpecification

Interpretation
Properties

(Assertions)

RTL CodingInterpretation

Property
Formalization

Reconvergence Model for
Formal Property Checking

pre-condition post-condition

10

RTLSpecification

Interpretation
Properties

(Assertions)

RTL CodingInterpretation

Property
Formalization Property

Checking
under env_constraint if condition then expectation

Reconvergence Model for
Formal Property Checking

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.
§ Checking is typically performed on a Finite State Machine model of

the design.
– This may be an FSM model of the RTL (as shown in the example).

11

RTLSpecification

Interpretation
Properties

(Assertions)

RTL CodingInterpretation

Property
Formalization Property

Checking

There are
also Model
Checkers

for software,
e.g. C, C++
and Java.

https://en.wikipedia.
org/wiki/List_of_mod

el_checking_tools

under env_constraint if condition then expectation

Reconvergence Model for
Formal Property Checking

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.
§ Checking is typically performed on a Finite State Machine model of

the design.
– This may be the RTL (as shown in the example).

https://en.wikipedia.org/wiki/List_of_model_checking_tools

12

Overview of Formal Property Checking
§ Property Checking is the most common form of

high-level formal verification used in practice.
§ Property checking is fully automatic.

– Requires the properties to be written.
§ It performs exhaustive verification of the design

wrt the specified properties.
§ It provides proofs and can demonstrate the

absence of bugs.
§ A counterexample is presented for failed

properties.
§ Frequently used for critical, well specified parts of

the design, e.g. cache coherence protocols, bus
protocols, interrupt controllers, interfaces

13

Scalability of Formal Verification
Due to the fact that
formal verification is
exhaustive, formal
methods can suffer from
capacity limits.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic model
checking: 1020 States and beyond, Information and Computation, Volume 98, Issue

2, 1992, Pages 142-170, ISSN 0890-5401.
https://doi.org/10.1016/0890-5401(92)90017-A

https://doi.org/10.1016/0890-5401(92)90017-A

14

How big is exhaustive?
§ Consider simulating a typical CPU design

– 500k gates, 20k DFFs, 500 inputs
– 70 billion simulation cycles,

running on 200 linux boxes for a week
– How big: 236 cycles

Simulasaurus

15

How big is exhaustive?
§ Consider simulating a typical CPU design

– 500k gates, 20k DFFs, 500 inputs
– 70 billion sim cycles,

running on 200 linux boxes for a week
– How big: 236 cycles

§ Consider formally verifying this design
– Input sequences: cycles 2(inputs+state) = 220500

– What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
– How big: 220500 cycles (215000 combinations of X is not significant here!)

Simulasaurus

16

How big is exhaustive?
§ Consider simulating a typical CPU design

– 500k gates, 20k DFFs, 500 inputs
– 70 billion sim cycles,

running on 200 linux boxes for a week
– How big: 236 cycles

§ Consider formally verifying this design
– Input sequences: cycles 2(inputs+state) = 220500

– What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
– How big: 220500 cycles (215000 combinations of X is not significant here!)

§ These are a big numbers!
– Cycles to simulate the 500k gate CPU design: 236 (70 billion)
– Cycles to formally verify a 32-bit adder: 264 (18 billion billion)
– Number of stars in universe: 274 (1022)

Simulasaurus

17

How big is exhaustive?
§ Consider simulating a typical CPU design

– 500k gates, 20k DFFs, 500 inputs
– 70 billion sim cycles,

running on 200 linux boxes for a week
– How big: 236 cycles

§ Consider formally verifying this design
– Input sequences: cycles 2(inputs+state) = 220500

– What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
– How big: 220500 cycles (215000 combinations of X is not significant here!)

§ These are a big numbers!
– Cycles to simulate the 500k gate CPU design: 236 (70 billion)
– Cycles to formally verify a 32-bit adder: 264 (18 billion billion)
– Number of stars in universe: 274 (1022)
– Number of atoms in the universe: 2260 (1078)
– Possible X combinations in 500k gate design: 215000 (104515 x 3)
– Cycles to formally verify the 500k gate design: 220500 (106171)

Simulasaurus

18

Managing complexity in FV
§ There are tried and trusted techniques to

overcome the capacity limitations of FV:
– Start with narrow focus on block level, work up

towards higher levels in the design hierarchy
turning proven assertions into assumptions

– Restrict property checking to work over finite
small time windows.

– Limit environment behaviour by strengthening
constraints.

– Case splits over a set of properties, partitioning
and black boxing.

19

Functional Verification Approaches
Verification

Reviews

DynamicStatic

PrototypingSimulationFormalCode
Analysis

Dynamic Formal
Linters

Theorem
Proving

Property
Checking

Equivalence
Checking

Silicon

FPGA

Emulation

Hybrid

20

Simulation vs Formal Verification

Only selected parts
of the design can be

covered during
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification – The Complete Industry Cycle”, Morgan
Kaufman, 2005]

Bug

21

Simulation vs Formal Verification

Naïve interpretation
of exhaustive formal

verification:

Only selected parts
of the design can be

covered during
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification – The Complete Industry Cycle”, Morgan
Kaufman, 2005]

Verify ALL properties.

Challenge 1:
Specify

properties to
cover the entire

design.
Challenge 2:

Prove all these properties.

Bug

22

Simulation vs Formal Verification

In practice, completeness
issues and capacity limits

restrict formal verification to
selected parts of the design.

Naïve interpretation
of exhaustive formal

verification:

Only selected parts
of the design can be

covered during
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification – The Complete Industry Cycle”, Morgan
Kaufman, 2005]

Verify ALL properties.

Challenge 1:
Specify

properties to
cover the entire

design.
Challenge 2:

Prove all these properties.

Bug

23

Outcomes of Formal Property Checking
Formulate Property

Invoke Property Checker

Property proven Property fails

Property is
trivially true

Vacuity check

Bug in
Property

Property is
non-trivially

true

DUV
satisfies
Property

Counterexample (CE)

Unreach-
able

Reach-
able

DUV bug
detected

Reach-
able other
CE exists

No reach-
able other
CE exists

Bug in
Property

DUV bug
detected

24

Outcomes of Formal Property Checking
Formulate Property

Invoke Property Checker

Property proven Property fails

Property is
trivially true

Vacuity check

Bug in
Property

Property is
non-trivially

true

DUV
satisfies
Property

Counterexample (CE)

Unreach-
able

Reach-
able

DUV bug
detected

Reach-
able other
CE exists

No reach-
able other
CE exists

Bug in
Property

DUV bug
detected

Specify
environment

constraints for
proof.

Correctness of
proof relies on

correctness of the
environment
constraints.

25

Outcomes of Formal Property Checking
Formulate Property

Invoke Property Checker

Property proven Property fails

Property is
trivially true

Vacuity check

Bug in
Property

Property is
non-trivially

true

DUV
satisfies
Property

Counterexample (CE)

Unreach-
able

Reach-
able

DUV bug
detected

Reach-
able other
CE exists

No reach-
able other
CE exists

Bug in
Property

DUV bug
detected

Most common
mistake, restrict

input space so much
that property

becomes trivially
true.

Specify
environment

constraints for
proof.

Correctness of
proof relies on

correctness of the
environment
constraints.

26

Outcomes of Formal Property Checking
Formulate Property

Invoke Property Checker

Property proven Property fails

Property is
trivially true

Vacuity check

Bug in
Property

Property is
non-trivially

true

DUV
satisfies
Property

Counterexample (CE)

Unreach-
able

Reach-
able

DUV bug
detected

Reach-
able other
CE exists

No reach-
able other
CE exists

Bug in
Property

DUV bug
detected

Specify
environment

constraints for
proof.

Under-constrained
properties may lead

to unreachable
counterexamples.

Most common
mistake, restrict

input space so much
that property

becomes trivially
true.

27

How do you know you’ve encoded the property right?

§ But if the property succeeds, how do you know
whether you’ve encoded the property right?

§ Keep properties and sequences
simple; build complex properties
from simple, short properties.

§ Peer review properties you write.
§ Know what to expect, e.g. create

failing conditions.
§ If the property fails (when you

expect it to succeed), then
investigate the counterexample:
– Is it reachable or not?

28

HANDS-ON FORMAL
PROPERTY CHECKING DEMO

29

Formal Property Checking
§ Jasper DEMO

– DUV: FIFO design from ABV lecture
– Verification of selected FIFO properties from ABV

30

The demo session includes
§ Automatic generation of basic properties using

“Visualize”:
§ Basic functionality of the DUV
§ Range checks of signals

§ Verification of SVA properties:
§ “Empty and full are never asserted together.”
§ “After clear the FIFO is empty.”
§ “On empty after one write the FIFO is no longer empty.”

§ Inspect and understand counterexamples:
§ Debug several failed properties

§ Close link to coverage closure (by construction).
§ Link from env_constraints to simulation assertions.

Note:

31

Summary

Functional Formal Verification
§ Distinction between static and dynamic

verification techniques
§ Reconvergence model for formal verification
§ What happens during formal verification
§ Capacity limits and techniques to manage

complexity
§ Simulation vs. formal verification
§ Outcomes of formal property checking
§ Guidelines on writing properties

Conclusion

§ Carefully select the verification methods that maximize ROI
for each level in the design hierarchy.

§ Complement simulation with formal verification techniques to
exploit the benefits and mitigate the limitations of each
technique.

No single method
is adequate to
verify a whole

design in
practice.

