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Formal Property Checking
Properties of a design (aka assertions) are 

formally proven or disproved.
§ Used to complement simulation-based verification. 
§ Usually employed at lower levels in the design hierarchy.

Give a 
reconvergence model 

for 
formal property checking!

A reconvergence
model is a 
conceptual 

representation of 
the verification 

process. 
It helps us 

understand what 
is being verified.
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RTLSpecification

Interpretation
Properties 

(Assertions)
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Property 
Formalization Property 
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under env_constraint if condition then expectation

Reconvergence Model for 
Formal Property Checking

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.
§ Checking is typically performed on a Finite State Machine model of 

the design.
– This may be an FSM model of the RTL (as shown in the example).
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There are 
also Model 
Checkers 

for software, 
e.g. C, C++ 
and Java.

https://en.wikipedia.
org/wiki/List_of_mod

el_checking_tools

under env_constraint if condition then expectation

Reconvergence Model for 
Formal Property Checking

§ Properties are derived from the specification. (interpretation step)
§ Properties are expressed as formulae in some (temporal) logic.
§ Checking is typically performed on a Finite State Machine model of 

the design.
– This may be the RTL (as shown in the example).

https://en.wikipedia.org/wiki/List_of_model_checking_tools
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Overview of Formal Property Checking 
§ Property Checking is the most common form of 

high-level formal verification used in practice.
§ Property checking is fully automatic. 

– Requires the properties to be written.
§ It performs exhaustive verification of the design

wrt the specified properties. 
§ It provides proofs and can demonstrate the 

absence of bugs.
§ A counterexample is presented for failed 

properties.
§ Frequently used for critical, well specified parts of 

the design, e.g. cache coherence protocols, bus 
protocols, interrupt controllers, interfaces



13

Scalability of Formal Verification
Due to the fact that 
formal verification is 
exhaustive, formal 
methods can suffer from 
capacity limits.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic model 
checking: 1020 States and beyond, Information and Computation, Volume 98, Issue 

2, 1992, Pages 142-170, ISSN 0890-5401.
https://doi.org/10.1016/0890-5401(92)90017-A

https://doi.org/10.1016/0890-5401(92)90017-A
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How big is exhaustive?
§ Consider simulating a typical CPU design

– 500k gates, 20k DFFs, 500 inputs
– 70 billion simulation cycles, 

running on 200 linux boxes for a week
– How big: 236 cycles

Simulasaurus
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How big is exhaustive?
§ Consider simulating a typical CPU design

– 500k gates, 20k DFFs, 500 inputs
– 70 billion sim cycles, 

running on 200 linux boxes for a week
– How big: 236 cycles

§ Consider formally verifying this design
– Input sequences: cycles 2(inputs+state) = 220500

– What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
– How big: 220500 cycles (215000 combinations of X is not significant here!)

§ These are a big numbers!
– Cycles to simulate the 500k gate CPU design:   236 (70 billion)
– Cycles to formally verify a 32-bit adder: 264 (18 billion billion)
– Number of stars in universe: 274 (1022)  
– Number of atoms in the universe: 2260 (1078)
– Possible X combinations in 500k gate design: 215000 (104515 x 3)
– Cycles to formally verify the 500k gate design: 220500 (106171)

Simulasaurus
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Managing complexity in FV
§ There are tried and trusted techniques to 

overcome the capacity limitations of FV:
– Start with narrow focus on block level, work up 

towards higher levels in the design hierarchy 
turning proven assertions into assumptions

– Restrict property checking to work over finite 
small time windows.

– Limit environment behaviour by strengthening 
constraints.

– Case splits over a set of properties, partitioning 
and black boxing.
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Simulation vs Formal Verification

Only selected parts 
of the design can be 

covered during 
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification  – The Complete Industry Cycle”, Morgan 
Kaufman, 2005]

Bug
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Simulation vs Formal Verification

Naïve interpretation 
of exhaustive formal 

verification:

Only selected parts 
of the design can be 

covered during 
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification  – The Complete Industry Cycle”, Morgan 
Kaufman, 2005]

Verify ALL properties.

Challenge 1:
Specify 

properties to 
cover the entire 

design.
Challenge 2:

Prove all these properties.

Bug
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Simulation vs Formal Verification

In practice, completeness 
issues and capacity limits

restrict formal verification to  
selected parts of the design.

Naïve interpretation 
of exhaustive formal 

verification:

Only selected parts 
of the design can be 

covered during 
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification  – The Complete Industry Cycle”, Morgan 
Kaufman, 2005]

Verify ALL properties.

Challenge 1:
Specify 

properties to 
cover the entire 

design.
Challenge 2:

Prove all these properties.

Bug
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Outcomes of Formal Property Checking
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environment 
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proof.

Under-constrained 
properties may lead 

to unreachable 
counterexamples.

Most common 
mistake, restrict

input space so much 
that property 

becomes trivially 
true.
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How do you know you’ve encoded the property right?

§ But if the property succeeds, how do you know 
whether you’ve encoded the property right?

§ Keep properties and sequences 
simple; build complex properties 
from simple, short properties.

§ Peer review properties you write.
§ Know what to expect, e.g. create 

failing conditions.
§ If the property fails (when you 

expect it to succeed), then 
investigate the counterexample:
– Is it reachable or not?
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HANDS-ON FORMAL 
PROPERTY CHECKING DEMO
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Formal Property Checking 
§ Jasper DEMO

– DUV: FIFO design from ABV lecture
– Verification of selected FIFO properties from ABV
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The demo session includes
§ Automatic generation of basic properties using 

“Visualize”:
§ Basic functionality of the DUV
§ Range checks of signals

§ Verification of SVA properties:
§ “Empty and full are never asserted together.”
§ “After clear the FIFO is empty.” 
§ “On empty after one write the FIFO is no longer empty.”

§ Inspect and understand counterexamples:
§ Debug several failed properties

§ Close link to coverage closure (by construction).
§ Link from env_constraints to simulation assertions.

Note:
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Summary

Functional Formal Verification
§ Distinction between static and dynamic 

verification techniques
§ Reconvergence model for formal verification
§ What happens during formal verification 
§ Capacity limits and techniques to manage 

complexity
§ Simulation vs. formal verification 
§ Outcomes of formal property checking
§ Guidelines on writing properties



Conclusion

§ Carefully select the verification methods that maximize ROI 
for each level in the design hierarchy.

§ Complement simulation with formal verification techniques to 
exploit the benefits and mitigate the limitations of each 
technique. 

No single method 
is adequate to 
verify a whole 

design in 
practice.




