COMS30026 Design Verification
Functional Formal

Verification
Kerstin Eder

Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

(Acknowledgement: | gratefully acknowledge the support from Cadence who provide the licenses for the Formal
Verification Tool demonstration. Special thanks also to Anton Klotz from the Cadence Academic Network.)

Vé University of Department OE :‘“2
BRISTOL COMPUTER SCIENCE <~

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

Functional Verification Approaches

Verification
Static Dynamic
— DY L
Reviews \/ Code (Form\alj Simulation Prototyping
Analysis - -
N
Silicon
Linters
/ | FPGA
v = Y ¢
Equivalence Property Theorem Emulation
Checking Checking Proving
_ -

Functional Verification Approaches

Verification

Static | ----- » Hybrid |« ---- Dynamic

= m‘
7 —

Reviews Code (Formal) W\) Prototyping
Analysis

T v 1 _
Dynamic Formal Silicon
Linters T
FPGA
Equivalence Property Theorem Emulation
Checking Checking Proving

Formal Property Checking

Properties of a design (aka asserti

formally proven or disproved.

dare

= Used to complement simulation-based verification.
= Usually employed at lower levels in the design hierarchy.

Give a
reconvergence model
for
formal property checking!

-

A reconvergence
model is a
conceptual

representation of

the verification
process.
It helps us
understand what
is being veri{if’

d.
N\
)) ‘1\ |

4

Reconvergence Model for
Formal Property Checking

- RTL Codin
Interpretat
/ \

RTL

Reconvergence Model for
Formal Property Checking

= Properties are derived from the specification. (interpretation step)
= Properties are expressed as formulae in some (temporal) Togic.

Interpretation RTL Coding

RTL

Reconvergence Model for
Formal Property Checking

= Properties are derived from the specification. (interpretation step)
= Properties are expressed as formulae in some (temporal) logic.

Interpretation RTL Coding

RTL

\
@retation

—@

Reconvergence Model for
Formal Property Checking

= Properties are derived from the specification. (interpretation step)
= Properties are expressed as formulae in some (temporal) logic.

Interpretation RTL Coding

RTL

Property

Formalization
Interpretation

Properties
(Assertions)

—

Reconvergence Model for
Formal Property Checking

= Properties are derived from the specification. (interpretation step)
= Properties are expressed as formulae in some (temporal) logic.

pre-condition

env_constraint condition expectation

Interpretation RTL Coding

Property RTL

Formalization

Interpretation ,‘

Properties
(Assertions)

Reconvergence Model for
Formal Property Checking

Properties are derived from the specification. (interpretation step)
Properties are expressed as formulae in some (temporal) logic.

Checking is typically performed on a Finite State Machine model of

the design.
— This may be an FSM model of the RTL (as shown in the example).

——

Interpretation RTL Coding

Property
Formalization
Interpretation

env_constraint condition expectation

RTL

Property
Checking

(Assertions)

10

Reconvergence Model for
Formal Property Checking

Properties are derived from the specification. (interpretation step)
Properties are expressed as formulae in some (temporal) logic.

Checking is typically performed on a Finite State Machine model of
the design.
— This may be the RTL (as shown in the example).
There are

RTL Coding also Model
Checkers
for software,

RTL e.g. C, C++
and Java.

Property = pipsenwikipedia.
Checking org/wiki/List_of _mod

el checking tools

Interpretation

Property
Formalization
Interpretation

Properties

env_constraint condition expectation (ASSG rt| ons) /

https://en.wikipedia.org/wiki/List_of_model_checking_tools

Overview of Formal Property Checking

= Property Checking is the most common form of
high-level formal verification used in practice.

* Property checking is fully automatic.\/~
— Requires the properties to be written.

= |t performs exhaustive verification of the design

= |t provides proofs and can demonstrate the
absence of bugs.

= A counterexample is presented for failed
properties.

* Frequently used for critical, well specified parts of
the design, e.g. cache coherence protocols, bus

protocols, interrupt controllers, interfaces K
12

Scalability of Formal Verification

INFORMATION AND COMPUTATION 98, 142-170 (1992)

Due to the fact that
formal verification is Symbolic Model Checking, 10 Sybtes and Beyond
exhaustive, formal o s ot
methods can suffer from

CaEaCity Iimits D. L. DiLL aND L. J. HwANG
|
Stanford University, Stanford. California 943035

Many different methods have been devised for automatically verifying finite state
systems by examining state-graph models of system behavior. These methods all
depend on decision procedures that explicitly represent the state space using a list
or a table that grows in proportion to the number of states. We describe a general
method that represents the state space symbolically instead of explicitly. The
generality of our method comes from usilml-of the Mu-Calculus as the
primary specification language. We describe a model checking algorithm for Mu-
Calculus formulas that uses Bryant's Binary Decision Diagrams (Bryant, R. E,,
1986, IEEE Trans. Comput. C-35) to represent relations and Tormulas. We then
show how our new Mu-Calculus model checking algorithm can be used to derive
efficient decision procedures for CTL model checking, satisfiability of linear-time
temporal logic formulas, strong and weak observational equivalence of finite
transition systems, and language containment for finite w-automata. The fixed
point computations for each decision procedure are sometimes complex, but can
be concisely expressed in the Mu-Calculus. We illustrate the practicality of our
approach to symbolic model checking by discussing how it can be used to verify a
simple synchronous pipeline circuit. i€ 1992 Academic Press, Inc.

checking: 1020 States and beyond, Information and Computation, Volume
2, 1992, Pages 142-170, ISSN 0890-5401. N\
https://doi.org/10.1016/0890-5401(92)90017-A

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic rr}adf ‘
9 e 1)

13

https://doi.org/10.1016/0890-5401(92)90017-A

How big is exhaustive?

= Consider simulating a typical CPU design
— M gates,&(DFFs, 500 inputs
— 70 billion simulation cycles,
running on 200 linux boxes for a week
— How big: 236 cycles

14

How big is exhaustive?

= Consider simulating a typical CPU design Simulasaurus g
— 500k gates, 20k DFFs, 500 inputs .
— 70 billion sim cycles,
running on 200 linux boxes for a week
— How big: 23¢ cycles
= Consider formally verifying this design
— Input sequences: cycles 2(inputs*state) = 220500
— What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
— How big: 220500 cycles (27°000 combinations of X is not significant here!)

15

How big is exhaustive?

= Consider simulating a typical CPU design
— M gates,&k_DFFs,S_OO. inputs
— 70 billion sim cycles,
running on 200 linux boxes for a week
— How big: 23¢ cycles
= Consider formally verifying this design
— Input sequences: cycles 2(inputs*state) = 220500
— What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
— How big: 220500 cycles (27°000 combinations of X is not significant here!)
= These are a big numbers!
— Cycles to simulate the 500k gate CPU design: 236 (70 billion)
— Cycles to formally verify a 32-bit adder: —> 204 (18 billion billion)
— Number of stars in universe: 214 (10%2)

16

How big is exhaustive?

Consider simulating a typical CPU design
— % gates,&k_DFFs,S_OO. inputs
— 70 billion sim cycles,
running on 200 linux boxes for a week
— How big: 23¢ cycles
Consider formally verifying this design
— Input sequences: cycles 2(inputs*state) = 220500
— What about X’s: 215000 (5,000 X-assignments + 10,000 non-reset DFFs)
— How big: 220500 cycles (27°000 combinations of X is not significant here!)
These are a big numbers!
— Cycles to simulate the 500k gate CPU design: 236 (70 billion)
— Cycles to formally verify a 32-bit adder: —> 204 (18 billion billion)
— Number of stars in universe: 214 (10%2)
— Number of atoms in the universe: 2260 (1078)

—

— Possible X combinations in 500k gate design: 215000 (104515 x 3)

—

— Cycles to formally verify the 500k gate design: 220500 (1(Q6171)

e

17

Managing complexity in FV

* There are tried and trusted techniques to
overcome the capacity limitations of FV:

— Start with narrow focus on block level, work up
towards highewj:&ls In the design hierarchy
turning proven assertions into assumptions

— Restrict property checking to work over finite
small time windows.

— Limit environment behaviour by stre N
constraints.

— Case splits over a set of properties, partitioning

and black boxing. o
__——_—

18

Functional Verification Approaches

Verification
Static ----- » Hybrid | ---- Dynamic
Reviews Code Formal Simulation Prototyping
Analysis
I v 1 _
Dynamic Formal Silicon
Linters
FPGA
Equivalence Property Theorem Emulation
Checking Checking Proving

19

Simulation vs Formal Verification

Bug

Only selected parts
of the design can be
covered during
simulation.

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification — The Complete Industry Cycle”, Monqu '))

Kaufman, 2005]

20

Simulation vs For~~! M Arification

Challenge 1:
Specify
properties to
cover the entire

design.

Challenge 2:
Prove all these properties.

Only selected parts
of the design can be
covered during
simulation.

/

[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification — The Complete Industry Cycle”, Morgq
Kaufman 2005]

A
QA \,}..

D), | \ ||

J

21

Simulation vs For~~! M Arification

Challenge 1:
Specify
properties to
cover the entire

design.

Challenge 2:
Prove all these properties.

In practice, completeness
issues and capacity limits
restrict formal verification to
selected parts of the design.

Only selected parts
of the design can be
covered during
simulation.

/| A
))
[B. Wile , J.C. Goss and W. Roesner, “Comprehensive Functional Verification — The Complete Industry Cycle”, Morgo\ " g,“ff“/ ,;;‘Lf"l
Kaufman, 2005] o7

22

Outcomes of Formal Property Checking

Folnulate Property

|
Invoke Property Checker /
il] o
\/ Property proven D¢ Property fails

Vacuity check_

Counterexample (CE)

Unreach- Reach-

Property is Property is able at|)le
trivially true non;:ﬂ\enally No reach- Reach- DUV bug

able other || able other detected

CE exists || CE exists

Bug in DUV
Property satisfies | |
Property Bug in DUV bug -
Property detected

23

Outcomes of Formal Propert

hecking

Formulate Property

Invoke Property Checker

Property proven

Property fails
|

Counterexample (CE)

Vacuity check
Property is Property is
trivially true non-trivially
true

Reach-
able

Unreach-

Outcomes of Formal Property Checking

Formulate Property
I
nvoke Property Checker

Property fails
|

Counterexample (CE)

Unreach- Reach-
Property is able
non-trivially
true

)

25

Outcomes of Formal Property Checking

Formulate Property
I
nvoke Property Checker

Property fails
|

nterexample (CE)

reach- Reach-

Property is able able
non-trivially No reach- Reach-
true able other || able other

CE exists || CE exists

O e

How do you know you've encoded the property right?

= Keep properties and sequences
simple; build complex properties
from simple, short properties.

= Peer review properties you write.

= Know what to expect, e.g. create
failing conditions.

= |f the property fails (when you
expect it to succeed), then
investigate the counterexample:

— Is it reachable or not?

" But if the property succeeds, how do you know .

whether you’ve encoded the property right? :
27

HANDS-ON FORMAL
PROPERTY CHECKING DEMO

CY)
28

Formal Property Checking

= Jasper DEMO

— DUV: FIFO design from ABYV lecture

— Verification of selected_ FIFO properties from ABV

x| (session_0) - Jaspg @ [C] | (session_0) - JasperGold Apps (.../sessionLogs/session_0) - ProofGrid Manager
File Edit View Design Reports Appl File Tools Plot Tabs Window Help cadence
&) Formal Property ... |r} | ” B bt c "I‘ ‘ = L “‘,
Fily Design Setup: k
’75.? BB g %0 M'H% <embedded> (thread 0) | 16
% (= I er on ne
Design Hierarch X |Property Table
E B l‘l ter on na 14
i | |_cnt_range_top
Name | Assert | valid_cnt_range_bottom o
assume:0 || Assert mutex_full_empty & (1) % 4 w12
valid_cnt_range_top || assert|empty_after clear wrong % (1,2) X4 2
valid_cnt_range_bottt| assert empty_after_clear « (1,2) Z 8 E 10
mutex_full_empty Assert ...ty_after_clear_ignore_write « (1,2) ¥ 8 %
empty_after_clear_wi| assert|empty_after_clear_no_wr & (1,2) % 8 9 s
empty_after_clear || assert|empty_one_write_wrong % (1,2) X2 E
empty after clear ia : 3
'| | L' ki ’ Assert empty._one_wrlte Q‘; (1,2) 2 8 :6. .
Des... T |> Total 17 |Al Assert RW_fails 7 (1,2) X 4 S
| Assert| RWEmpty « (1,2) 2 8 a
& session 0 | [assert rwran ¥ (1,2) % 8 4
+ Arcex ‘| cover fifo_not_full ¢ (1,1) %1
- undetermined : : & 5
- unprocessed Cover |[fifo_full 7 (1,5) ¢ 11
- error Cover |fifo_empty (1,1 T 1
covers Cover |fifo_not_empty (1,1 %1 0
- unreachable T T T T T T
- covered 0 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08
- ar_covered 1 | | Job Time [s]
- undetermined : : - - =
- unprocessed Index | Engine |[PID |Host |Status Time | Memory (Resident) | Progress | Proof2
- error 0|PRE 0.0s
| 0/Hp snowy.cs.bris.ac.uk |Stopped 0.1s 10.99 Mie Iy |
[<embedded>] % 0Ht SNOWY.CS br!s ac.uk |Stopped 01s 9.33 M‘\B
O/N snowy.cs.bris.ac.uk |Stopped 01s 897MBIL______] L |
- - . 0B snowv.cs.bris.ac.uk |Stopped 0.1s 7.19 MiB g
Console I Lint Messages | Warnings /| « | »

ProofGrid Manager is Enabled

29

The demo session Includes

= Automatic generation of basic properties using
“Visualize”:
= Basic functionality of the DUV
= Range checks of signals

= Verification of SVA properties:
= “Empty and full are never asserted together.”
= “After clear the FIFO is empty.”
= “On empty after one write the FIFO is no longer empty.”

* Inspect and understand counterexamples:
= Debug several failed properties

Note: = Close link to coverage closure (by construction).

= Link from env_constraints to simulation assertions.

30

Summary

Functional Formal Verification

= Distinction between static and dynamic
verification techniques

= Reconvergence model for formal verification
= What happens during formal verification
= Capacity limits and techniques to manage

complexit
= Simulation vs. formal verification

= Qutcomes of formal property checking

= Guidelines on writing properties D

31

Conclusion

No single method
IS adequate to

verify a whole
design in
practice.

= Carefully select the verification methods that maximize ROI
for each level in the design hierarchy.

= Complement simulation with formal verification techniques to
exploit the benefits and mitigate the limitations of each

technique. Q@)

