
COMS30026 Design Verification

Are we there yet?
(The back-end of the verification cycle)

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

2

Outline

§ The verification cycle - revision
§ Coverage closure
§ Regression
§ Tape-out readiness
§ Escape analysis

§ Analysis and adaptation
– Coverage analysis – already covered under “Coverage”

– Failure analysis – optional material included at end

3

The Verification Cycle
Functional

Specification

Designer implements
the functional specification

(in HDL)

Create
Verification

Plan
Develop

Verification
Environment

Stimulus, checkers,
Formal Verification

Debug HDL and
Environment

Run Regression

Perform Escape
Analysis

Debug Fabricated
Hardware

Lessons
Learned

Tape Out
Readiness

Plan
Review

4

My Environment Is Ready. Now What?

§ More functionality was added to the design
– And therefore, to the verification environment

§ Mature enough design is progressed to the next
level in the design hierarchy
– Unit to core to chip to system

§ Bugs are being discovered and fixed
– And bug fixes need to be verified

§ The implementation of the verification plan continues
– Closing holes in coverage
– Updating the verification plan itself as needed

§ Regression is being executed regularly to ensure
everything still works

COVERAGE CLOSURE

6

Coverage Closure
Coverage closure is the process of:
1. Finding areas of coverage not exercised

by a set of tests, called Coverage Holes!
2. Creating additional tests to increase

coverage by targeting these holes.
– Beware: Aim to “balance” coverage!

7

Coverage Closure
Coverage closure is the process of:
1. Finding areas of coverage not exercised

by a set of tests, called Coverage Holes!
2. Creating additional tests to increase

coverage by targeting these holes.
– Beware: Aim to “balance” coverage!
– During coverage closure we may face

controllability issues:
§ If the cases to be hit contain DUV internal states/signals

(flags), tests that directly exercise all combinations are often
hard to find because we can only indirectly control these from
the primary inputs of the DUV.

8

80/20 Split
In practice: 80/20 (20/80) split wrt coverage progress.

Good news:)
§ 80% of coverage is achieved (relatively quickly/easily)

driving randomly generated tests.
§ This takes about 20% of total time/effort/sim runs spent

on verification.

Bad news:(
§ Gaining the remaining 20% coverage,

– i.e. filling the remaining coverage holes (which often needs to be
done manually and requires a lot of engineering skill plus design
understanding),

§ can take as much as 80% of the total time/effort/sim runs
spent on verification.

9

Run tests
Collect coverage

Create initial coverage model
Generate tests

Review/enhance coverage models if needed
Add tests to target holes

Identify coverage holes

From Verification Plan:

Current research: How can we automate this further?

Coverage-Driven Verification Methodology

10

Coverage-DIRECTED Test Generation

Run tests
Collect coverage

Create initial coverage model
Generate tests

Identify coverage holes

From Verification Plan:

Current research: How can we automate this further?

Machine
Learning

Review/enhance coverage models if needed

Use Machine
Learning to
automatically
add tests to
target holes.

11

CDG: Coverage-DIRECTED Test Generation
How can we make better use of coverage data to

automate stimulus generation?
Latest Research:
§ BY CONSTRUCTION

– Require description of design as FSM.
– Use formal methods to derive witness traces.
– Automatically translate witness traces to test vectors.
– Falls over in practice: FSMs are prohibitively large!

12

CDG: Coverage-DIRECTED Test Generation
How can we make better use of coverage data to

automate stimulus generation?
Latest Research:
§ BY CONSTRUCTION

– Require description of design as FSM.
– Use formal methods to derive witness traces.
– Automatically translate witness traces to test vectors.
– Falls over in practice: FSMs are prohibitively large!

§ BY FEEDBACK
Exploit Machine Learning techniques
– GAs/GP - Need to find suitable encoding (e.g. of

instructions).
– Bayesian Networks - Need to design and train BN.
– Data Mining in coverage spaces – Tend not to scale

that well.

14

Summary: Coverage Closure

§ Verification Methodology should be coverage-
driven.
– Shortens implementation time
– Improves quality
– Accelerates verification closure

§ Need for further automation
– Research into coverage-directed test generation

§ Delays in coverage closure are the main
reason why verification projects fall behind
schedule!

REGRESSION

16

Regression Suites
§ A regression suite is a set of tests that are

run on the verified design on a regular
basis
– After major changes
– Periodically: Every night or every weekend

§ Regression goals
– Assuring that things that worked did not stop

working
§ This is vital because every bug fix, on average,

introduces one fifth of a bug
– Detecting “unexpected” bugs

17

Types of Regression
§ Static regression

– The regression suite is comprised of a set of
“interesting” test patterns
§ Tests that have found bugs in the past
§ Tests that are known to reach corner cases

§ Random regression
– A.k.a. dynamic or probabilistic regression
– The regression suite is comprised of a set of

test specifications and an execution policy
§ For example: – execute 100 tests of specification A,

– 35 tests of specification B, and
– 20 tests of specification C

18

Static Vs. Random Regression
§ Static regression

þ Known, guaranteed quality
ý Sensitive to changes
ý Hard to maintain

§ Random regression
ý Unknown quality
þ Less sensitive to changes
þ Easy to maintain
þ Easy to adapt e.g. to simulation resources
þ Easy to adjust focus of testing

19

The Preferred Solution

§ Combination of static and random suites
§ Small static suite for cases that are hard

to recreate
– Hard to reach corner cases
– Tests that discovered hard to find bugs

§ Random suites for everything else

20

Regression Suites Requirements

§ A regression suite must be:
– Comprehensive so that it is likely to catch all the

bugs introduced
– Small so that it can economically be executed many

times
§ How can we make our regression suite small

and comprehensive?
§ Solution: use coverage information

– Select a set of tests that collectively achieve all the
coverage reached so far

– Select the smallest possible such set

21

The Set Cover Problem

§ Let S = {C1,...,Cn} be the set of coverage tasks
§ Let T = {T1,...,Tm} be a set of tests

– Each test Ti covers the subset {Ci1, Ci2, ...} of the
coverage tasks in S

§ The set cover problem:
Find the smallest subset of T that covers S.

§ The set cover problem is a known NP-complete
problem
– However, there are several good algorithms for it

22

Online Algorithm

§ For each new test T
– If T covers an uncovered coverage task

§ Add T to the regression suite

§ Advantages
– Very simple
– Low memory requirements

23

Online Algorithm Example

Accumulated Coverage

Uncovered Covered Newly covered

24

Online Algorithm Example

4 8

Test Coverage

Accumulated Coverage

Regression Suite

Uncovered Covered Newly covered

3

3

5

5

6

6

7

7

9

9

1

1 2

2

25

Greedy Algorithm
§ Initialization

– Build coverage matrix: tests vs. (coverage) tasks
– Select tests that uniquely cover tasks

§ Loop
– Remove all the tasks covered by selected tests
– Choose the test that covers most remaining tasks
until all covered tasks have been addressed

26

Greedy Algorithm
§ Initialization

– Build coverage matrix: tests vs. (coverage) tasks
– Select tests that uniquely cover tasks

§ Loop
– Remove all the tasks covered by selected tests
– Choose the test that covers most remaining tasks
until all covered tasks have been addressed

§ Advantages
– Quality solution in terms of coverage and size
– Complexity is polynomial in the number of tests and

coverage tasks
§ Disadvantage

– Requires keeping the entire coverage matrix in memory

27

Greedy Algorithm Example
4 8

Test Coverage

3 5 6 7 91 2

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
5

a b c d e f g h i j k l m n o p

a b c d

ponm
ki lj

f hge

1. Build Coverage Matrix

Number of covered tasks

28

Greedy Algorithm Example
4 8

Test Coverage

3 5 6 7 91 2

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
5

a b c d e f g h i j k l m n o p
1. Build Coverage Matrix

Number of covered tasks

2. Select tests that uniquely
cover tasks

Regression Suite: 5, 9

a b c d

ponm
ki lj

f hge

29

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
4

a b c d e f g h i j k l m n o p
1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
5

a b c d e f g h i j k l m n o p
1
2
3
2
0
5
1
4
0

Greedy Algorithm Example
4 8

Test Coverage

3 5 6 7 91 2

1. Build Coverage Matrix
2. Select tests that uniquely

cover tasks
3. Loop

a. Remove all the tasks covered
by selected tests

b. Choose the test that covers
most remaining tasks

Regression Suite: 5, 9Regression Suite: 5, 9, 6

30

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
4

a b c d e f g h i j k l m n o p
1
2
3
2
0
5
1
4
0

Regression Suite: 5, 9, 6

Greedy Algorithm Example
4 8

Test Coverage

3 5 6 7 91 2

1. Build Coverage Matrix
2. Select tests that uniquely

cover tasks
3. Loop

a. Remove all the tasks covered
by selected tests

b. Choose the test that covers
most remaining tasks

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
5

a b c d e f g h i j k l m n o p
1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6

a b c d e f g h i j k l m n o p
1
2
3
2
0
5
1
4
0

0
1
0
1
0
0
1
2
0

Regression Suite: 5, 9, 6, 8

31

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
4

a b c d e f g h i j k l m n o p
1
2
3
2
0
5
1
4
0

Regression Suite: 5, 9, 6

Greedy Algorithm Example
4 8

Test Coverage

3 5 6 7 91 2

1. Build Coverage Matrix
2. Select tests that uniquely

cover tasks
3. Loop

a. Remove all the tasks covered
by selected tests

b. Choose the test that covers
most remaining tasks

1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6
5

a b c d e f g h i j k l m n o p
1
2
3
4
5
6
7
8
9

2
2
4
4
2
8
1
6

a b c d e f g h i j k l m n o p
1
2
3
2
0
5
1
4
0

0
1
0
1
0
0
1
2
0

Regression Suite: 5, 9, 6, 8
Online Algorithm Regression Suite: 1,2,3,5,6,7,9

COMPLETION CRITERIA

33

When Is Verification Done?
Regress

Coverage
Complete?

Bug Rate
Dropped

No Open
Issues

Review

Clean
Regression “Ship It”!

Yes

No

No

No

No

No

Yes

Yes

Yes
Yes

34

When Is Verification Done?
Regress

Coverage
Complete?

Bug Rate
Dropped

No Open
Issues

Review

Clean
Regression “Ship It”!

Yes

No

No

No

No

No

Yes

Yes

Yes
Yes

35

Tape-Out Readiness
§ Before sending a design

to manufacturing, it must
meet established tape-
out criteria

§ Verification is just one element in this series of
checklists

§ Tape-out readiness is measured by a set of metrics
§ The most relevant metrics for verification are bug

rates and coverage

§ The criteria are a series of
checklists that indicate
completion of planned work

ESCAPE ANALYSIS

37

Escape Analysis
§ An escape is a bug found later in the verification

process than it should have been
– In other words, it escaped its target place
– Usually, escapes refer to bugs found in the hardware

itself instead of during simulation

§ Escape analysis has two important aspects
– Make sure that the bug is fully understood and fixed

correctly
§ We do not want another tape-out because of a bad fix

– Understand why the bug escaped simulation in the
first place
§ replicate the bug in simulation and
§ improve the verification plan and process to avoid such

escapes in the future

38

Individual Escape Analysis Timeline

Anomaly found
in hardware

Anomaly determined
to be a functional
problem

Collect data
and theorize on
the bug source

Reproduce
the bug in
simulation or
formal verification

Look for
related bugs

Design team
determines fix

Verification team
validates fix

Analyze and
categorize the
escape

Fix applied
to hardware

Time

39

Individual Escape Analysis Timeline

Anomaly found
in hardware

Anomaly determined
to be a functional
problem

Collect data
and theorize on
the bug source

Reproduce
the bug in
simulation or
formal verification

Look for
related bugs

Design team
determines fix

Verification team
validates fix

Analyze and
categorize the
escape

Fix applied
to hardware

Time

Summary

§ Completion of the Verification Cycle includes:
– Coverage closure
– Coverage analysis

§ (already under “Coverage”)

– Failure analysis*
§ (optional – see attached slides)

– Regression
– Tape-out readiness
– Escape analysis

* Optional material, see attached slides with detailed notes but no narration.

COMS30026 Design Verification

Are we there yet?
(The back-end of the verification cycle)

Analysis and Adaptation

Kerstin Eder
(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Department of
COMPUTER SCIENCE

43

Analysis and Adaptation

§ Building a good verification plan is the first step
for successful verification
– But it is not enough!

§ Need to constantly:
– Monitor the verification process
– Analyze the observations
– Adapt to address issues identified by the analysis

§ Three basic levels of adaptation
– Change the way the verification environment is

activated
– Change the verification environment
– Change the verification plan

44

Two Types of Analysis

1. Coverage analysis
– Was included in the lectures on coverage.

2. Failure analysis

FAILURE ANALYSIS

46

Failure Analysis

§ During execution of the verification plan (many)
failures are observed

§ This is not a bad phenomenon
– Remember that the goal of the verification process is

to identify faults in the DUV

§ The goal of failure analysis is to understand
failures, their causes, their relation to one
another, and their relation to the verification
process

47

Failures and Faults

§ Failure – an observed DUV behavior that
violates the specified behavior

§ Fault – the root cause of a failure
§ There can be a many-to-many relationship

between faults and failures
– Mishandling of overflow in the input FIFO can cause:

§ Lost commands in the output port
§ Bad data in the output port

– Bad data in the output port can be caused by:
§ Mishandling of overflow in the input FIFO
§ Bad selection in the output selector

48

How Failures Are Detected

§ Inspection and code review
§ Output of formal verification tools or other

static analysis tools, such as lint
§ Activation of response checkers during

simulation
§ Analysis of coverage data
§ Visual observation of application

misbehavior

49

Types of Failure Analysis

§ Detailed failure analysis
– Understand the cause and effects of failures

and faults on the design, environment,
verification process and more

§ Statistical failure analysis
– Identify trends, provide prediction

50

Detailed Failure Analysis

§ The outcome of the analysis
– The failure is understood and recorded
– The failure is resolved
– The verification plan and process are adapted
– Lessons learned for the future

§ Note: In most cases failure analysis—and
especially the last two items—are simple and the
outcome of the analysis is that we found a failure
and a fault when and where expected and
because we are doing our job the right way.

51

Understanding the Failure

§ The goal is to understand the scope and severity
of the failure and how the failure can be
recreated

§ Provides useful information for debugging and
other parts of the failure analysis
– Simplify and generalize the failure conditions

§ Find simper settings / stimuli that recreate the failure
§ Find necessary and sufficient conditions for the failure

– Localize the fault in terms of place and time
– Research: Generate easy-to-debug tests

52

What to look for
§ In simulation

– Determinism
§ Does the failure always occur in the same settings?

– With the same seed?
– With different seeds (or random seed)?

– Parameters that are correlated with the failure
§ Parameters that cause the failure to disappear
§ Parameters that cause the failure to change

– Specific parts in the stimuli that are correlated to the
failure

§ In formal verification
– Constraints that affect the failure
– Time bounds that affect the failure

53

Resolving the Failure
§ This does not always mean fixing the fault

– Defer to future tape outs / releases
– Bypass by software or surrounding modules
– Record in errata sheets

§ Need to ensure that the resolution is complete
– The fix / bypass is correct
– All cases are covered
– No new faults introduced in the process
– (Similar cases are also handled)

§ Mini-verification plan is needed
– Coverage models
– Stimuli generation strategy
– New result checkers

54

Adapting the Verification Plan and Process

§ Need to minimize faults found by chance or found
too late
– These faults can easily be missed if we are less lucky

§ Indicators that faults are found by chance
– Faults are not found at the right time

§ Fault is found at the wrong level of the hierarchy
§ Faults are found not at the area we concentrate on
§ Need to understand why faults are not found at the right time

– And, change the plan and process accordingly

– Faults are not found by the right checker
§ Only a side effect of the fault is detected
§ May indicate missing checker or problems in existing checker

– Simulation with failure is not flagged by coverage
§ Does not activate uncovered or rarely covered coverage points
§ Indicates missing coverage models

55

Correlating Coverage and Failures

§ There is a direct correlation between
– Changes in the verification environment and the DUV
– Progress in coverage
– Detection of new failures

Coverage

Environment

Failures

56

Correlating Failure Rate and Coverage Progress

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Weeks

%
 C

ov
er

ag
e

0

5

10

15

20

25

30

Fa
ilu

re
 R

at
e

57

Individual Coverage and Failure Correlation
§ Correlating a failure to specific coverage can be

helpful in the failure analysis and debugging
processes

§ Rare coverage points exercised by a simulation
that fails can hint at the location of the fault that
caused the failure
– Rare coverage points are coverage points rarely, if ever,

exercised by passing simulations
– These coverage points record what happened in the

DUV prior to the failure
– They are very useful if the failure is distant (in logic or

time) from the fault or the fault is complex
§ If no such rare coverage points are recorded, then

it is likely that the failure is found by chance
– The verification plan needs to be refined to catch these

failures

