COMS30026 Design Verification

Are we there yet?

(The back-end of the verification cycle)

Kerstin Eder

(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

& A University of Department o™ ’f?.
& BRISTOL COMPUTER SCIENCE

Outline

= The verification cycle - revision
= Coverage closure
= Regression
™ 'Fape-out readiness
(_")Escape analysis

= Analysis and adaptation
— Coverage analy‘S_‘i_S — already covered under “Coverage”
— Failure analysis — optional material included at end

/| (\\\
/ QA W\
= 19)
\ V7

The Verification Cycle

Designer implements
the functional specification
> (in HDAL)

Functional
Specification

Plan
Create Review

Verification \ Develop
Plan Verification \
Environment v
Leséons \/ Stimulus, checkers, D€bug HDL and
Learned Formal Verificaton Environment

Perform Escape
Analysis

\ Run Regression
Tapge Out
Debug Fabricated A/\/Raez%ingss

Hardware

My Environment Is Ready. Now What?

= More functionality was added to the design
— And therefore, to the verification environment

= Mature enough design is progressed to the next
level in the design hierarchy
— Unit to core to chip to system

= Bugs are being discovered and fixed
— And bug fixes need to be verified

= The implementation of the verification plan continues
— Closing holes in coverage
— Updating the verification plan itself as needed

= Regression is being executed regularly to ensure
everything still works)

COVERAGE CLOSURE

Coverage Closure

Coverage closure is the process of:

1. Finding areas of coverage not exercised
by a set of tests, called Coverage Holes!

2. Creating additional tests to increase
coverage by targeting these holes.
— Beware: Aim to “balance” coverage! Z

=

Coverage Closure

Coverage closure is the process of:

1. Finding areas of coverage not exercised
by a set of tests, called Coverage Holes!

2. Creating additional tests to increase
coverage by targeting these holes.

— Beware: Aim to “balance” coverage!

— During coverage closure we may face

Controllabili‘ty ISSUes:

» |f the cases to be hit contain DUV internal states/signals
(flags), tests that directly exercise all combinations are often
hard to find because we can only indirectly control these fro 19
the primary inputs of the DUV.

80/20 Split

In practice: 80/20 (20/80) split wrt coverage progress.

Good news:)

= 80% of coverage is achieved (relatively quickly/easily)
driving randomly generated tests.

= This takes about 20% of total time/effort/sim runs Ins spent
on verification. —

Bad news:(
= Gaining the remaining 20% coverage,
— i.e. filling the remaining coverage holes (which often needs to be

done manually and requires a lot of engineering skill plus design
understanding),

= can take as much as 80% of the total time/effort/sim rup~
spent on verification. ™)

Coverage-Driven Verification Methodology

From Verification Plan: Create initial coverage model
Generate tests

Run tests
f 3 Collect coverage

Identify coverage holes | <——

!

il BN
;‘i Review/enhance coverage models if needed
f Add tests to target holes

Current research: How can we automate this furtffﬁ?“

9

Coverage-DIRECTED Test (Generation

From Verification Plan: | Create initial coverage model
Generate tests

—

Run tests

Collect coverage
k

Use Machine
Learning to
automatically
add tests to
target holes.

>

f\

Machine
Learning

|dentify coverage holes .L(

!

%@ Review/enhance coverage models if needed

Current research: How can we automate this further?,

10

CDG: Coverage-DIRECTED Test Generation

How can we make better use of coverage data to
automate stimulus generation?

Latest Research:
. BY CONSTRUCTION &~
— Require description of design a

— Use formal methods to derive witnhess traces.
— Automatically translate witness traces to test vectors.

— Falls over in practice: FSMs are prohibitively large!

11

CDG: Coverage-DIRECTED Test Generation

How can we make better use of coverage data to
automate stimulus generation?

Latest Research:
= BY CONSTRUCTION
— Require description of design as FSM.
— Use formal methods to derive witness traces.
— Automatically translate witness traces to test vectors.

— Falls over in practice: FSMs are prohibitively large!

- BY FEEDBACK <
Exploit Machine Learning techniques

— GAs/GP - Need to find suitable encoding (e.g. of
instructions).

— Bayesian Networks - Need to design and train BN.

— Data Mining in coverage spaces — Tend not to scale

that well.
12

One-0n-0One: Mike Muller

- ONEE0E =

Arm’s CTO sounds off on machine learning, the new starting point

for designs, new markets that are opening up, and what became of

dark silicon.

NOVEMBER 30TH, 2017 - BY: ED SPERLING

SE: It's getting to the point where instead of just developing chips,
we're looking at what we can do with technology. We have enough
processing power to make machine learning possible, and enough
bandwidth and memory to make it ubiquitous. And that's just one
narrow area. Where do you see all of this heading?

Muller: We tend to get hung up on all the ‘high
techy/transistor'y/software/cloud/appsy world,’ but there’s awful lot going
on elsewhere. For example,
in gene-editing, there’s
people down the road from
us at Ambrosia who will

inject you with blood plasma
from young people because
that's how you will regain a
bit of your vitality. There's a
whole lot of biomedical stuff
going on that is as

transformational. CRISPR
gene editing raises a whole lot of ethical and moral questions, but the

ﬂlluller: We just did a machine learning project on CPU verification. Can \

you train a set of classifiers to work out what are good and bad tests for a

load store unit? The answer is yes you can. Generating tests is cheap.
_—r

Running them is really expensive. So if you can train a classifier to

recognize good tests, you can generate a million more, run them through

the classifier and select just the best ones. You actually can halve the time

Q takes to do verification. There is machine learning in products. You J
might use machine learning to make your business more efficient. Your

customer may never know about any of this stuff. It's not just about shiny
new toys. It's actually about looking at everything you do. And for us, a big
chunk of our effort goes into verification. Machine learning can do some
of it better than people. It's not a sexy application, but it's a significant cost
in our business. What's happened is the tool flows for doing machine
learning have gone from geeky research to the point where you can
download it and have two people sit on the side of a verification team and
see what they can hack together. With remarkably inefficient, badly
stitched together machine learning algorithms and a few CPU cycles

you
can transform how we do this. | am surprised you can do an awf[twr h,
very little. It's because there are now a lot of high-quality tools out ti. ré//”

that let you build flows and stitch it all together.

Summary: Coverage Closure

= Verification Methodology should be coverage-
driven.

— Shortens implementation time
— Improves quality
— Accelerates verification closure

= Need for further automation
— Research into coverage-directed test generation

|
= Delays in coverage closure are the main
reason why verification projects fall behind

schedule! N8

14

Designer implements

Functional the functional specification
Specification < (in HDL)
Plan
Create Review
Verification \ Develop
Plan Verification

Environment
Lessons ¢ Stimulus, checkers, Debug HDL and
Learned Formal Verification Environment

Perform Escape
Analysis

S

Debug Fabricated
Hardware

Run Regression

REGRESSION

A
D)

J

Regression Suites

= A regression suite is a set of tests that are
run on the verified design on a regular
basis
— After major changes
— Periodically: Every night or every weekend

= Regression goals
— Assuring that things that worked did not stop

working

» This is vital because every bug fix, on average,
introduces one fifth of a bug

— Detecting "unexpected” bugs RN

16

Types of Regression

= Static regression

— The regression suite is comprised of a set of
“interesting” test patterns

» Tests that have found bugs in the past
= Tests that are known_to reach corner cases

= Random regression L
— A.k.a. dynamic or probabilistic regression

— The regression suite is comprised of a set of
test specifications and an execution policy

= For example: —execute 100 tests of specification A,

— 35 tests of specification B, and o
— 20 tests of specification Q__

17

Static Vs. Random Regression

= Static regression

vl Known, guaranteed quality
X] Sensitive to changes

X] Hard to maintain

= Random regression
x] Unknown quality
v] Less sensitive to changes

vl Easy to maintain
vl Easy to adapt e.g. to simulation resources

vl Easy to adjust focus of testing =)

18

The Preferred Solution

= Combination of static and random suites

= Small static suite for cases that are hard
to recreate
— Hard to reach corner cases
— Tests that discovered hard to find bugs

= Random suites for everything else

19

Regression Suites Requirements

= Aregression suite must be:

— Comprehensive so that it is likely to catch all the
bugs introduced

— Small so that it can economically be executed many
times

= How can we make our regression suite small
and comprehensive?

= Solution: use coverage information

— Select a set of tests that collectively achieve all the
coverage reached so far

— Select the smallest possible such set

20

The Set Cover Problem

Let S = {C;,...,C,} be the set of coverage tasks

Let T ={T,,... m} be a set of tests

— Each test T, covers the subset {C,, C,2 ..} of the
coverage tasks in S

The set cover problem:
Find the smallest subset of T that covers S.

The set cover problem is a known NP-complete
problem

— However, there are several good algorithms for it

21

Online Algorithm

= For each new testL

— If T covers an uncovered coverage task
» Add T to the regression suite

= Advantages
— Very simple
— Low memory requirements

22

Online Algorithm Example

]

Accumulated Coverage

Uncovered B covered Newly covered I

Online Algorithm Example

y
1 2 3 4 5 6 7 8 9
23 R])
Test Coverage
VM -'

. I‘EEEE

Accumulated Coverage

it R E o R

Regression Suite

Uncovered B Covered Newly covered [;‘t‘ \

24

Greedy Algorithm

= Initialization
— Build coverage matrix: tests vs. (coverage) tasks
— Select tests that uniquely cover tasks

= Loop N — ™
Remove all the tasks covered by selected tests
— Choose the test that covers most remaining tasks

until all covered tasks have been addressed

25

Greedy Algorithm

= Initialization
— Build coverage matrix: tests vs. (coverage) tasks
— Select tests that uniquely cover tasks

= Loop N — ™
Remove all the tasks covered by selected tests
— Choose the test that covers most remaining tasks

until all covered tasks have been addressed

= Advantages
— Quality solution in terms of coverage and size

— Complexity is polynomial in the number of tests and
coverage tasks *

= Disadvantage

— Requires keeping the entire coverage matrix in memury
T - 26

Greedy Algorithm Example

l

2 3 4 5 6 7 8 9

P e e e e P e

Test Coverage

B
—13] Q.

|
[mln

T 4
\, abcde fghijklmno
— J ! L@ 1. Build Coverage Matrix
2 2
3 4
Vv 4 4
5 2
6 8
7 1
8 6
€
/\ Number of covered tasks [/)

27

Greedy Algorithm Example

2 3 4 5 6 7 8 9

P e R R P e

Test Coverage

EiE
S

ft'
' —
Ve (R
O|— 351 Q]

O X]

\ A\ { v
abcde fgh ij k|l mnop
1 = — miE 1. Build Coverage Matrix
2 T 2 2. Select tests that uniquely
3 4 cover tasks
4 4
»>5 2
6 8
7 1
8 6
»>9 5
Number of covered tasks | Regression Suite: 5, 9 [' N

28

Greedy Algorithm Example

1 2 3 4 5 6 7 8 9

o P e e P R T e

Test Coverage

abcde fghij k|l mnop

1. 1 1. Build Coverage Matrix
2 HE 22 2. Select tests that uniquely
3 . A& 3 cover tasks
4 |1 4 2 3. Loop &——
5 20 a. Remove all the tasks covered
by selected tests
L - i@ b. Choose the test that covers
’ most remaining tasks
8 T HEr
9 & 0

/\ Regression Suite: 5,9, 6 B

———

29

Greedy Algorithm Example

1 2 3 4 5 6 7 8 9

A e - EeEE

Test Coverage

abcde fghij k|l mnop

1 40 1. Build Coverage Matrix
2 |1 2.2 1 2. Select tests that uniquely
3 L0 cover tasks

27 1 3. Loop
g . ; 0 a. Remove all the tasks covered

by selected tests
6 850
1 b. Choose the test that covers
7 most remaining tasks
— 38 b A4

9 A0 0

/\

Regression Suite: 5,9, 6, 8
30

Greedy Algorithm Example

1 2 3 4 5 6 7 8 9

A e - o

Test Coverage

abcde fghij k|l mnop

P 1. Build Coverage Matrix

1
5 22 1 2. Select tests that uniquely
3 &30 cover tasks
> 1 3. Loop

g ; o 0 a. Remove all the tasks covered
. &5 0 by selected tests

Popo b. Choose the test that covers

N g et 2 most remaining tasks

9 A& o0

Regression Suite: 5,9,6,8 <
Online Algorithm Regression Suite: 1,2,3,5,6,7,9 &31

COMPLETION CRITERIA

When |Is Verification Done?

—

No Coverage

omplete?

No

33

When |Is Verification Done?

—

No Coverage

omplete?

No

34

Tape-Out Readiness

Before sending a design v e fanccnar spsoneater
to manufacturing, it must N\ .. Ve,
meet established tape- \,\ 1

out criteria e DEat?r:n?n;a?d
The criteria are a series of \
checklists that indicate L

Hardware

completion of planned work

Verification is just one element in this series of
checklists

Tape-out readiness is measured by a set of metrics

The most relevant metrics for verification are buo
rates and coverage

35

Designer implements

Functional the functional specification

Specification < (in HDL)

Plan

Create Review
Verification \ Develop
Plan Verification

Environment

Lessons Stimulus, checkers, DebuQ HDL and

Learned Formal Verification Environment

l

Run Regression

Perform Escape
Analysis

Hardware

ESCAPE ANALYSIS

/| A
[DRINI

N

Escape Analysis

= An escape is a bug found later in the verification
process than it should have been

— In other words, it escaped its target place

— Usually, escapes refer to bugs found in the hardware
itself instead of during simulation

= Escape analysis has two important aspects

— Make sure that the bug is fully understood and fixed
correctly I —

= We do not want another tape-out because of a bad fix
— Understand why the bug escaped simulation in the
first place
» replicate the bug in simulation and

= improve the verification plan and process to avoid such
escapes in the tuture r

37

Individual Escape Analysis Timeline

Collect data Analyze and

Anomaly found and theorize on Look for Verification team categorize the
in hardware th@ource related bugs validates fix escape

l . =SS l l l »Time
| f f f f

Anomaly determined Reproduce Design team Fix applied

to be a functional the bug in determines fix to hardware
problem simulation or
/R formal verification

38

Individual Escape Analysis Timeline

Collect data Analyze and

Anomaly found and theorize on Look for Verification team categorize the
in hardware th@ource related bugs validates fix escape

l . =SS l l l »Time
| f f f f

Anomaly determined Reproduce Design team Fix applied

to be a functional the bug in determines fix to hardware
problem simulation or
/R f_ormal verification

39

Summary

= Completion of the Verification Cycle includes:

— Coverage Closure SFunc]:tional theljl‘iiigt?c)e;;:nsrgzg?ﬁg:ion
) pecification —> (in HDL)
—> — Coverage analysis e Y0
. ” Verification Develop
= (already under “Coverage’) Plan \

Verification
. Dy . Enwronment‘} Sbug HDL and
'——9 n
- Fallure anaIySIS farc;\esd V//v?:tommIaIVehfc:to Enwronmept
= (optional — see attached slides)

\V . —

— Regression
Y Tape-out readiness
‘—/Escape analysis

Perform Escape
AnaIyS|s

Run Regressmn

Tapge Out
Debug Fabricated A/FfeI:;dl : s

Hardware

* Optional material, see attached slides with detailed notes but no narration. E

COMS30026 Design Verification
Are we there yet?

(The back-end of the verification cycle)

Analysis and Adaptation

Kerstin Eder

(Acknowledgement: Avi Ziv from the IBM Research Labs in Haifa has kindly permitted the re-use of some of his slides.)

Elic University of Department o™ /’i?.
& BRISTOL COMPUTER SCIENCE <’

Analysis and Adaptation

= Building a good verification plan is the first step
for successful verification

— But it is not enough!

= Need to constantly:
— Monitor the verification process
— Analyze the observations
— Adapt to address issues identified by the analysis

= Three basic levels of adaptation

— Change the way the verification environment is
activated

— Change the verification environment
— Change the verification plan

43

Two Types of Analysis

1. Coverage analysis
— Was included in the lectures on coverage.

2. Failure analysis

44

FAILURE ANALYSIS

Failure Analysis

= During execution of the verification plan (many)
failures are observed

= This is not a bad phenomenon

— Remember that the goal of the verification process is
to identify faults in the DUV

= The goal of failure analysis is to understand
failures, their causes, their relation to one
another, and their relation to the verification
process

46

Failures and Faults

= Failure — an observed DUV behavior that
violates the specified behavior

= Fault — the root cause of a failure

= There can be a many-to-many relationship
between faults and failures

— Mishandling of overflow in the input FIFO can cause:

» Lost commands in the output port
» Bad data in the output port

— Bad data in the output port can be caused by:

» Mishandling of overflow in the input FIFO
» Bad selection in the output selector B

47

How Failures Are Detected

= |nspection and code review

= QOutput of formal verification tools or other
static analysis tools, such as lint

= Activation of response checkers during
simulation

= Analysis of coverage data

= Visual observation of application
misbehavior

48

Types of Failure Analysis

= Detailed failure analysis

— Understand the cause and effects of failures
and faults on the design, environment,
verification process and more

= Statistical failure analysis
— ldentify trends, provide prediction

49

Detailed Failure Analysis

= The outcome of the analysis
— The failure is understood and recorded

— The failure is resolved
— The verification plan and process are adapted

— Lessons learned for the future

= Note: In most cases failure analysis—and
especially the last two items—are simple and the
outcome of the analysis is that we found a failure
and a fault when and where expected and
because we are doing our job the right way.

50

Understanding the Failure

= The goal is to understand the scope and severity
of the failure and how the failure can be
recreated

= Provides useful information for debugging and
other parts of the failure analysis

— Simplify and generalize the failure conditions

* Find simper settings / stimuli that recreate the failure
* Find necessary and sufficient conditions for the failure

— Localize the fault in terms of place and time
— Research: Generate easy-to-debug tests

91

What to look for

= |n simulation

— Determinism

» Does the failure always occur in the same settings?
— With the same seed?
— With different seeds (or random seed)?

— Parameters that are correlated with the failure
= Parameters that cause the failure to disappear
» Parameters that cause the failure to change

— Specific parts in the stimuli that are correlated to the
failure

= |n formal verification
— Constraints that affect the failure
— Time bounds that affect the failure |

52

Resolving the Failure

* This does not always mean fixing the fault
— Defer to future tape outs / releases
— Bypass by software or surrounding modules
— Record in errata sheets

= Need to ensure that the resolution is complete
— The fix / bypass is correct
— All cases are covered
— No new faults introduced in the process
— (Similar cases are also handled)

= Mini-verification plan is needed
— Coverage models
— Stimuli generation strategy
— New result checkers

53

Adapting the Verification Plan and Process

* Need to minimize faults found by chance or found

too late
— These faults can easily be missed if we are less lucky

* Indicators that faults are found by chance

— Faults are not found at the right time
» Fault is found at the wrong level of the hierarchy
= Faults are found not at the area we concentrate on

» Need to understand why faults are not found at the right time
— And, change the plan and process accordingly

— Faults are not found by the right checker
» Only a side effect of the fault is detected
= May indicate missing checker or problems in existing checker

— Simulation with failure is not flagged by coverage

= Does not activate uncovered or rarely covered coverage qur":s |
» Indicates missing coverage models

o4

Correlating Coverage and Failures

= There is a direct correlation between
— Changes in the verification environment and the DUV
— Progress in coverage
— Detection of new failures

95

Correlating Failure Rate and Coverage Progress

100 — 30

90

l
T

N

(3))

80
70

l
T

N

o

60

50

% Coverage
o
Failure Rate

40

-
o

30

20

l
T
a

10 A

0 0

12 3 45 6 7 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30
Weeks

|
56

Individual Coverage and Failure Correlation

- Correlatin%a failure to specific coverage can be
helpful in the failure analysis and debugging

Processes

= Rare coverage points exercised by a simulation
that fails can hint at the location of the fault that
caused the failure

— Rare coverage points are coverage points rarely, if ever,
exercised by passing simulations

— These coverage points record what happened in the
DUV prior to the failure

— They are very useful if the failure is distant (in logic or
time) from the fault or the fault is complex
= If no such rare coverage points are recorded, then
it is likely that the failure is found by chance

— The verification plan needs to be refined to catch thes '’
failures 57

