
36



37

So far, we discussed how to build a good verification plan. This is a necessary first 
step for successful verification, but a good plan alone is not sufficient for a 
successful verification. The reason for that is no matter how careful and detailed our 
plan is, we cannot foresee everything that will happen during the execution of the 
plan. Specifically, we cannot foresee when and where bugs will be found. In 
addition, even a perfect plan cannot guarantee success if its execution is not good 
enough.

Therefore, throughout the execution of the VP, we need to constantly monitor the 
verification process, analyze the observations we get, and adapt to address the 
issues that are pointed out by the observations and the analysis.

Adaptation can lead to changes in all aspects of the verification process, starting 
from its foundations, namely the verification plan. Simply speaking, the adaptation 
can be at three basic levels. The simplest level is changes in the way the verification 
environment is activated. Changes at this level can include adding new stimuli 
specifications for the stimulus generator or simply changes the number of simulation 
jobs executed for existing specifications. More complex adaptation require changes 
to verification environment itself, and in some cases the verification plan need to be 
adapted to address some issues. Note that changes at a basic level may often 
require changes at the levels above it as well. 



38

The observation data and analysis can come from many sources, and many 
observations analysis and adaptation come from project management in general, 
engineering projects specifically, and even more specifically, SW development. 
Here, we concentrate on items that are specific to verification, namely coverage 
analysis and failure analysis. Coverage analysis is the main vehicle for measuring 
the progress of verification against the plan; while failure analysis can help us 
identify problems in the plan itself. 



39



40

During the execution of the verification plan failures occur. It is important to note that 
this phenomenon is not necessarily bad, because, after all, the goal of the 
verification process is to demonstrate that the implementation adheres to the 
requirements and the specification and this is usually done by removing faults or 
bugs that prevent it from doing so. The goal of failure analysis is to learn as much 
as possible from failures and their causes. Failure analysis should lead to fixing 
everything that needs to be fixed, and this is more than just removing the bug from 
the implementation. In fact, here we focus on analysis that helps fixing the 
verification plan and its execution. 



41

Before talking about analysis, some terminology and the difference between failure 
and fault. Failure is an observation that the behavior of the implementation is not 
what it should be. Fault is the root cause of the failure. Permanent logical and 
functional faults are often called bugs, and in the discussion here we may 
interchange faults and bugs. For example, if by mistake we replace an and gate with 
an or gate in an adder, a possible failure is getting 1 + 1 = 3, while the fault is the 
gate replacement.
It is important to note that in many cases there is many-to-many relation between 
faults and failures. For example, a fault of mishandling overflow in the input queue 
of the DMA engine can lead to lost commands in the output port or bad data there 
(two different failures) and bad data may be caused by this mishandling of overflow 
or selecting a wrong data source. 



42

Failures can be detected in many ways ranging from inspection and reviews (not 
only of code, but also requirements, specification, verification plans, and more) to 
visual observation of real-life application misbehavior. 



43

We can divide failure analysis into two main categories. Detailed analysis looks at a 
failure or fault (or a small group of them) and tries to understand the cause and 
effects of the failure. Statistical analysis looks at larger sets of failures and tries to 
extract statistical information out of them, such as trends and predictions. Statistical 
analysis is similar in many ways to coverage progress analysis. 



44

We start with detailed analysis, and for the detailed analysis we start at the end. 
Namely, what is the outcome of the analysis? The outcome has several elements in 
it. First, we need to ensure that the failure is understood and recorded (this can 
save a lot of time and effort when similar failures are found in the future). Next, the 
failure needs to be resolved. This does not necessarily mean that the fault leading to 
it is fixed. The last two elements concern the verification process. First, we need to 
ensure that the verification plan and process are adapted accordingly, and that any 
important lessons learned are applied in the future.
While this sounds scary, it is important to note that in most cases the last two 
elements are very simple. They say that we found a failure because we were 
looking for it and we did our job properly. 



45

The first thing is to understand the failure in term of its effects. An important aspect 
here is to find how to recreate the failure because this will lead to the underlying 
fault. When doing so, we would like to extract as much useful information for 
debugging and other parts of the analysis. Important aspects here is simplifying and 
generalizing the failure conditions and localizing it as much as possible. 



46

An important aspect in understanding a failure is understanding the conditions in 
under which it occurs. In simulation, the first thing to check is how deterministic the 
failure is. In other words, does it always occur in the same settings (with and without 
the same random seed). Next, it can be useful to understand which parameters in 
the environment are correlated to the failure. Specifically, we look for parameters 
that cause the bug to disappear or change behavior. More useful—but in many 
cases harder to obtain information—is direct correlation between the applied 
stimulus and the failure. The equivalent to this in formal verification are the 
constraints and bounds applied in the formal verification process. 



47

The next step is resolving the failure. As mentioned earlier, this does not always 
mean fixing the bug. No matter what resolution is used, it is important that it is 
correct and complete and that it did not introduce new failures. It is also important to 
check that similar faults—sometimes called “cousin bugs” —do not exist or are fixed 
as well. This calls for a mini-verification plan for the fix (but again this mini-plan can 
be quite small). 



48

The goal of adaptation is to reduce the number of faults found by chance. Finding 
faults accidentally is dangerous because these faults can easily be missed if we are 
less lucky. Therefore, an important part of failure analysis is looking for indications 
that a fault was found by chance, fixing the verification plan and its implementation 
to ensure that similar faults are found because we are looking for them. Indications 
that a fault is found by chance are:

•Wrong place or time — wrong level of the hierarchy (e.g., the adder bug is 
found only at system verification); failures at areas that we do not 
concentrate on (e.g., the adder bug is found while concentrating on the 
multiplier). We need to understand why the fault was not caught at the right 
time and fix the plan accordingly. For example, adding coverage model for 
the adder operation would have prevented this problem.
•Fault is found by the wrong checker — For example the adder bug is 
found because it caused wrong data length in outgoing message. Here, we 
need to ensure that proper checkers that catch such failures close to their 
occurrence are added.
•Simulation is not flagged by coverage — If the simulation with failure 
does not hit an uncovered or rarely covered event, then that simulation is not 
different from other simulation from coverage point of view. This means that a 
coverage point or coverage model that corresponds to the failure is missing.



49

An important aspect of analysis and adaptation is the correlation between coverage 
and failures, correlation between the two of them and changes in the design and 
environment. For example, activating a new feature in the design should open the 
door for new bugs to show themselves (as we saw earlier) and also improve 
coverage.



50

This plot shows the failure rate (the blue plot, note error in printed version) and 
coverage progress as a function of time. The plot shows that most failures are 
exposed when coverage increases at the fastest pace. The explanation for this is 
simple. When coverage progresses faster, it means that more areas of the design 
are explored at the same time, and therefore, the potential of finding new problems 
increases. 



51

Correlating a specific failure with a coverage point can be useful in the failure 
analysis process. If a failed simulation hits rare coverage points, these points can 
provide hints about the location of the fault that caused the failure. The rare events 
are a trail of what happened in the DUV prior to the failure, thus they can indicate 
where the fault might be. This is especially true if the failure is far from the fault or 
the fault is complex.

On the other hand, if the failed simulation does not contain rare coverage points, it 
is likely that the failure was found by chance. In this case we should investigate 
what is missing in the verification plan and how to refine it so that such failures 
would not escape.


