
COMS30026 Design Verification

High-level Verification
with specman and e
Part 2: Advanced Features

Kerstin Eder
Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

Department of
COMPUTER SCIENCE

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

2

Randomized Test Generation needs…

... repeatability:

Same testbench version + same test
+ same random seed
= same stimulus data.

Is this all? The testbench evolves over time!

3

Randomized Test Generation needs…
Repeatability:

Same testbench version + same test
+ same random seed
= same stimulus data.

Random stability:
§ Changes to the testbench should not affect orthogonal aspects!

– Packet data structure:

struct packet {
...
payload: list of byte;
...};

4

Randomized Test Generation needs…
Repeatability:

Same testbench version + same test
+ same random seed
= same stimulus data.

Random stability:
§ Changes to the testbench should not affect orthogonal aspects!

– Packet data structure with new interrupted field:

struct packet {
...
payload: list of byte;
interrupted: bool;
...};

With same seed we should get the same payload data!

5

Packing: Driving Stimulus into the DUV
pack() function:
§ pack() is a Specman Elite system function.

– pack(option: pack option, item: exp, ...): list of bit
– Each item is a legal “e” expression that is a scalar or a compound data

item, such as a struct, field, list, or variable.

6

Packing: Driving Stimulus into the DUV
pack() function:
§ pack() is a Specman Elite system function.

– pack(option: pack option, item: exp, ...): list of bit
– Each item is a legal “e” expression that is a scalar or a compound data

item, such as a struct, field, list, or variable.

§ Converts a higher-level data structure to the bit stream required by
the DUV during simulation.
input_stream = pack(packing.high, opcode, op1, op2);

cmd = pack(packing.high, opcode);
data = pack(packing.high, op1); ...

§ pack options are: packing.high, packing.low or NULL
– packing.high: 1st item at MSB position in the bit stream
– packing.low: 1st item at LSB position in the bit stream
– NULL: Use global default - set initially to packing.low.

7

Packing High

packing.high: 1st item at MSB

input_stream = pack(packing.high,addr, data);

packet.addr = 2’b11; 11

packet.data[0] = 0xaa; 10101010

packet.data[1] = 0xee; 11101110

17……………………………………………0
input_stream = 11 10101010 11101110

struct packet {
addr: uint;
data: list of uint;

};

8

Packing Low

packing.low: 1st item at LSB

input_stream = pack(packing.low,addr, data);

packet.addr = 2’b11; 11

packet.data[0] = 0xaa; 10101010

packet.data[1] = 0xee; 11101110

17……………………………………………0
input_stream = 11101110 10101010 11

struct packet {
addr: uint;
data: list of uint;

};

9

Fields
[!][%] field-name[:type] [[min-val..max-val]] [((bits | bytes):num)]

! Denotes an ungenerated field.
% Denotes a physical field.

– The type for the field can be any scalar type, string, struct, or list.
– (bits | bytes: num) specifies the width of the field in bits or bytes.

type NetworkType: [IP=0x0800, ARP=0x8060] (bits: 16);
struct header {

%address: uint (bits: 48);
%length: uint [0 .. 31];

};
struct packet {

hdr_type: NetworkType;
%hdr: header;
is_legal: bool;
!counter: uint;

};

§ The order of fields in the struct is important!
– It is the packing order for the physical fields in the struct.

10

Physical Fields
§ Marked with %.
§ Physical fields are packed when the struct is packed.
§ Used for fields that represent data that will be sent to

HDL design in the simulator.
§ If no range is specified, width of field is determined by

field's type.
§ If the field's type does not have a known width, you must

use (bits | bytes: num) syntax to define the width.
– (Important for packing!)

Non-physical fields are called virtual fields.
§ They are not packed automatically when the struct is

packed.
– (They can be packed individually if needed.)

11

Ungenerated Fields
§ Marked with !

– Values for these fields are not auto generated.
– Useful for fields that:

§ Are explicitly assigned values during verification.
§ Must contain values whose computation is too

complicated to be expressed with constraints.

struct packet {
addr: uint;
payload: list of byte;
!parity: bool;

compute-even-parity(data: list of byte): bool is empty;

};

12

Initialisation of Ungenerated Fields

Ungenerated fields are assigned a
default initial value:

– 0 for scalars, NULL for structs and empty list for
lists.

– Ungenerated fields whose value is from a range
(e.g. [20..30]) get initialized to the first value
in the range.

– If the field is a struct it won't be allocated and
none of the fields in it will be generated.

13

Limitations of e's AOP Implementation

§ (Too) Many things can be extended!
– So more discipline and foresight of the testbench structure are

required.

14

Limitations of e's AOP Implementation

§ (Too) Many things can be extended!
– So more discipline and foresight of the testbench structure are

required.
§ Fields in a struct can only be appended.

– Fields are physically appended to existing fields in a struct.
– Might create a problem when packing, wrt the packing order!

§ But items to pack can be listed individually to overcome this shortfall, i.e. the
order of the fields in the item list when calling pack does not need to match
the order in which the fields have been listed/declared in the struct.

15

Limitations of e's AOP Implementation
§ (Too) Many things can be extended!

– So discipline and foresight of the testbench structure are required.
§ Fields in a struct can only be appended:

– Fields are physically appended to existing fields in a struct.
– Might create a problem when packing (wrt packing order)!

§ But items to pack can be listed individually to overcome this shortfall, i.e. the
order of the fields in the item list when calling pack does not need to match the
order in which the fields have been listed/declared in the struct.

§ Variance control fields: Extensions can only be specified
for a single value of a control field.
– But we can use the following trick!

Extensions via variance control fields can only be specified
for a single value of the control field!

– Example: Extension to an instruction struct (for calc_1 design):
type opcode_t : [NOP, ADD, SUB, INV, INV1, SHL, SHR] (bits : 4);

struct instruction_s {
%cmd_in : opcode_t;
%din1 : uint (bits:32);
%din2 : uint (bits:32);
!resp : uint (bits:2);
!dout : uint (bits:32);
check_response(ins : instruction_s) is empty;

}; // struct instruction_s

extend instruction_s {
is_a_shift : bool;
keep is_a_shift == cmd_in in [SHL, SHR];

when is_a_shift instruction_s {
// Common extension to SHL and SHR goes here.
...
}

}

Extensions via variance control fields can only be specified
for a single value of the control field!

– To get around this, introduce an additional virtual field.
– This field controls the common extensions.
– Example: Extension to an instruction struct (for calc_1 design):
type opcode_t : [NOP, ADD, SUB, INV, INV1, SHL, SHR] (bits : 4);

struct instruction_s {
%cmd_in : opcode_t;
%din1 : uint (bits:32);
%din2 : uint (bits:32);
!resp : uint (bits:2);
!dout : uint (bits:32);
check_response(ins : instruction_s) is empty;

}; // struct instruction_s

extend instruction_s {
is_a_shift : bool;
keep is_a_shift == cmd_in in [SHL, SHR];

when is_a_shift instruction_s {
// Common extension to SHL and SHR goes here.
...
}

}

18

Limitations of e's AOP Implementation
§ (Too) Many things can be extended!

– So discipline and foresight of the testbench structure are required.
§ Fields in a struct can only be appended:

– Fields are physically appended to existing fields in a struct.
– Might create a problem when packing (wrt packing order)!

§ Variance control fields: Extensions can only be specified
for a single value of a control field.
Example:

§ Instructions SHL and SHR have a common feature.
§ We’d need to specify / code this for each (attracts higher

maintenance). But we can use the trick from previous slide!
§ Methods can only be appended, prepended or replaced.
§ Aspects are order-dependent (on loading).

19

Synch between SN and Simulator

Specman

Simulator

SN
executes
presim
phase

SN gives
control to
simulator

Sim runs until value of a signal
attached to an @sim event changes.
Issues callback and sim suspends.

Sim continues
until next
callback.

Callback triggers all SN events
attached to @sim event.
SN evaluates TEs, emits

events and executes TCMs.

ca
llb

ac
k

sys.tick_start sys.tick_end

t=0 ns t=N ns t=N ns

Issue Test
command

time

20

SN Predefined Event: @sim

event clk is rise (clk_p$) @sim;

§ @sim is a special sampling event.
§ @sim occurs at any simulator callback.

21

Synch between SN and Simulator

Specman

Simulator

SN
executes
presim
phase

SN gives
control to
simulator

Sim runs until value of a signal
attached to an @sim event changes.
Issues callback and sim suspends.

Sim continues
until next
callback.

Callback triggers all SN events
attached to @sim event.
SN evaluates TEs, emits

events and executes TCMs.

ca
llb

ac
k

sys.tick_start sys.tick_end

t=0 ns t=N ns t=N ns

Issue Test
command

time

22

SN Predefined Event: @sim

event clk is rise (clk_p$) @sim;

§ @sim is a special sampling event.
§ @sim occurs at any simulator callback.

– Expression must be an HDL signal path in the simulated model.
§ Signal does not have to be a clock.

– No restriction for signal to be periodic or synchronous.
§ Heavy use of @sim events might slow down simulation!

– Clock signal can also be emitted from “e” code and driven into
DUV. (But usually more efficient to generate clock in HDL.)

§ When not running with a simulator attached to SN, use
@sys.any.

23

Events in SN

§ Events are struct members.
§ Events are used to synchronize with the DUV or to

debug a test.

Automatic emission of events:

<'
extend driver_s {

event clk is fall(clk_p$) @sim;
event resp is change(out_resp1_p$)@clk;

};
’>

24

Events in SN

§ Events are struct members.
§ Events are used to synchronize with the DUV or to

debug a test.

Explicit emission of event:

<'
extend driver_s {

collect_response(cmd : command_s) @clk is also {
emit cmd.cmd_complete;

};
};

’>

25

Advanced Techniques: SN temporal checking

SN Temporal Language
§ Capture behaviour over time for synchronization with

DUV, functional coverage and protocol checking.
§ Language consists of:

– temporal expressions (TEs)
– temporal operators

§ Use event struct members to define occurrences of
events during a sim run

§ Use expect struct members for checking temporal
behaviour

§ PSL/Sugar and SVA compatible expressions.

26

Temporal Expressions in “e”

§ Each TE is associated with a sampling event.
§ Sampling event indicates when the TE

should be evaluated by SN.

§ Syntax examples:
true(boolean-exp)@sample-event
rise/fall/change(expression)@sample-event

27

Temporal Checking Methodology
1. Capture important DUV temporal behaviour with events

and TEs.
2. Use expect struct members to declare temporal checks.

expect TE else dut_error(string);

Example temporal checks:
expect @req => {[..4];@ack} @clk
else dut_error("Acknowledge did not follow

request within 5 clock cycles.");

expect @buffer_full => eventually @int @clk
else dut_error("Buffer full, but interrupt did not

occur.");
Remember, eventually means sometime before the end of
simulation!

28

Conforming to Stimulus Protocol
§ Need be able to react to state of DUV during simulation!

– clock, signal changes, sequences of events
§ “e” language provides wait (till next cycle) and sync

actions which allow to pause procedural code until the
key event occurs.

print a;
wait true(enable_p$==1)@clk;
print b;

print a;
sync true(enable_p$==1)@clk;
print b;

t0 t1 t2

print a;

enable

clk

print b;

print a;
print b;

29

Methods with a Notion of Time
TCMs - Time Consuming Methods

§ Depend on sampling event.
§ Can be executed over several simulation cycles.

collect_response(cmd : command_s) @clk is {
wait @resp; -- wait for the response
cmd.resp = out_resp1_p$;
cmd.dout = out_data1_p$;

}; // collect_response

§ Implicit synchronization action at beginning of TCM.

30

Methods with a Notion of Time
TCMs - Time Consuming Methods

§ TCM must be called or started to execute.

run() is also {
start drive(); // spawn

}; // run

§ Non-TCMs can't call TCMs because they have no
notion of time.

§ Instead, TCMs can (only) be started (using start)
from a non-TCM!

31

Synch between SN and Simulator

Specman

Simulator

SN
executes
presim
phase

SN gives
control to
simulator

Sim runs until value of a signal
attached to an @sim event changes.
Issues callback and sim suspends.

Sim continues
until next
callback.

Callback triggers all SN events
attached to @sim event.
SN evaluates TEs, emits

events and executes TCMs.

ca
llb

ac
k

sys.tick_start sys.tick_end

t=0 ns t=N ns t=N ns

Issue Test
command

time

Advanced Checking:
Scoreboarding in e
(this refers back to the lecture on checking)

DUV

Scoreboard

OK?

33

Scoreboarding in e - 1
Assume: The DUV does not change the order of packets.

– Hence, the first packet on the scoreboard has to match the
received packet.

34

Scoreboarding in e - 1
Assume: The DUV does not change the order of packets.

– Hence, the first packet on the scoreboard has to match the
received packet.

import packet_s;
unit scoreboard {
!expected_packets : list of packet_s;
add_packet(p_in : packet_s) is {

expected_packets.add(p_in);
};

};

35

Scoreboarding in e - 1
Assume: The DUV does not change the order of packets.

– Hence, the first packet on the scoreboard has to match the
received packet.

import packet_s;
unit scoreboard {
!expected_packets : list of packet_s;
add_packet(p_in : packet_s) is {

expected_packets.add(p_in);
};

check_packet(p_out : packet_s) is {
var diff : list of string;
-- Compare physical fields of first packet on scb with p_out.
-- Report up to 10 differences.
diff = deep_compare_physical(expected_packets[0], p_out, 10);
check that (diff.is_empty())

else dut_error(‘‘Packet not found on scoreboard.’’,diff);
-- If match was successful, continue.
out(‘‘Found received packet on scoreboard.’’);
expected_packets.delete(0);

};
};

36

Scoreboarding in e - 2

Recording a packet on the scoreboard:
Extend driver such that
– When packet is driven into DUV call add_packet method of

scoreboard.
§ Current packet is copied to scoreboard.

– It is useful to define an event that indicates when packet is being
driven.

37

Scoreboarding in e - 2

Recording a packet on the scoreboard:
Extend driver such that
– When packet is driven into DUV call add_packet method of

scoreboard.
§ Current packet is copied to scoreboard.

– It is useful to define an event that indicates when packet is being
driven.

Checking for a packet on the scoreboard:
Extend receiver such that
– When a packet was received from DUV call check_packet.

§ Try to find the matching packet on scoreboard.
– It is useful to define an event that indicates when a packet is

being received.

38

§ Aim:
– Raise level of abstraction, enable automation

and, thus, enhance productivity.
§ Strategy

– Putting Coverage, Stimuli Generation and
Checking together:

The Coverage-Driven
Verification Environment

High-level Verification

39

Traditional Approach: Directed Testing

Redo if design
changes

Automation Significant manual effort to write all the tests

Automation Work required to verify each goal was reached

Completeness Poor coverage of non-goal scenarios
… especially the cases that you didn’t “think of”

DUT

Verification engineers set goals (shown in green below) and write directed test for
each item in the Verification Plan; these directed tests are then executed:

40

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

stimulus

check

check

check

check

check

check

check

check

check

cov

cov

cov

cov

cov

cov

cov

cov…

cov

1

2

3

4

5

6

7

8

n

Directed test approach
driver

DUT
slave

directed tests

Directed Test Environment
§ Composition of directed tests

– Directed tests contain more than just stimulus.
– Checks are embedded into the tests to verify correct behavior.
– The passing of each test is the indicator that a functionality has been exercised.

§ Reusability and maintenance
– Tests can become quite complex, making it difficult to understand the intent of what

functionality is being verified.
– Since the checking is distributed throughout the test suite, it is a lot of maintenance to keep

checks updated.
– It is usually difficult or impossible to reuse the tests across projects or from module to system

level.
§ The more tests you have the more effort is

required to develop and maintain them.

maint

maint

maint

maint

maint

maint

maint

maint

maint

41

Focuses on reaching goal areas (versus execution of test lists):

Constrained-random stimulus generation explores goal areas (& beyond).
Coverage shows which goals have been exercised and which need attention.
(Checking needs to be in place to assess DUT/DUV response.)
Defining Coverage “Goals” Enables Automation: Constrained-random stimulus generation

accelerates hitting coverage goals and exposing bugs. Coverage and the results of checking
indicate effectiveness of each simulation. This also enables many parallel runs.

Coverage-Driven Verification Methodology

Even for non-goal states!

DUT/DUV
Simply changing
seeds generates

new stimulus

Add constraints to
target a specific

corner case

42

sequencer

scoreboard

transactiontransaction
monitor monitor

stimulus

Coverage-Driven Environment
§ Composition of a coverage driven environment

– Reusable stimulus sequences developed with “constrained random” generation.
– Running unique seeds allows the environment to exercise different functionality.
– Monitors independently watch the environment.
– Independent checks observe correct behavior and flag incorrect behavior.
– Independent coverage points indicate which functionality has been exercised.

driver
DUT

slave

0x223F stimulus
0XA30E

0X94D7

0XFF78

0X3767

0XCC18
0XDA83

0XBA1F
0X95FB

0X382E

stimulus
stimulus
stimulus
stimulus
stimulus
stimulus
stimulus
stimulus
stimulus

seed new test

coverage collection

check checkcov cov

stimulus sequences

stimulus sequences

stimulus sequences

stimulus sequences
sequence

library

43

Directed Testing vs CDV

Criteria:
§ Effectiveness
§ Efficiency
§ Maintainability
§ Re-usability

C
ov

er
ag

e

Time

100%
Directed
Approach
Constrained Pseudo-
random Coverage-
Driven Approach

Seeing that directed testing has
many shortfalls wrt these criteria.

Why would one use Directed
Testing?

44

Benefits of a CDV Methodology
Benefits:

– Overall, shorter implementation time
§ (Initial setup time)
§ Random generation covers many “easy” cases

Productivity

45

Benefits of a CDV Methodology
Benefits:

– Overall, shorter implementation time
§ (Initial setup time)
§ Random generation covers many “easy” cases

– Improved quality
§ Focus on goals in verification plan
§ Encourages exploration and refinement of the

coverage models

Productivity

Quality

46

Benefits of a CDV Methodology
Benefits:

– Overall, shorter implementation time
§ (Initial setup time)
§ Random generation covers many “easy” cases

– Improved quality
§ Focus on goals in verification plan
§ Encourages exploration and refinement of the

coverage models
– Accelerated verification closure

§ Refine and tighten constraints to target coverage
holes

Productivity

Quality

Performance

47

Specman Elite Tutorial
§ DUV: simple CPU (ALU, 4 regs, PC, PC_Stack, fetch/exec FSM)

– Interface: clock, reset, instruction [8 bit]
§ Learn how to:

– Design the verification environment
– Define DUV interfaces
– Generate a simple test
– Drive and check the DUV
– Generate constraint-driven tests
– Define and analyse test coverage
– Create corner case tests
– Create temporal and data checks
– Analyse and bypass bugs

§ About 100 pages. A really easy “learn by doing” lab.
Takes about 2h. J

48

On-line Help
§ All Specman and “e” language help is on-line:

– e language reference
– Command reference for Specman Elite
– User guide etc.

Make sure you follow the EDA setup:
> module use /eda/cadence/modules
> module load course/COMS30026

Then:
§ For sn and “e” help or other help with Cadence tools use

– sn_help.sh from command line or
– cdnshelp from command line.

49

We have now covered
§ Basics of the “e” verification language and

the important features of SN.
– If you take this unit with coursework, you should be

registered for the Specman Fundamentals for Block-
Level Environment Developers online training course,
which introduces you to SN and e in more detail and
provides you with exercises.

§ DEMO session of SN and e code for calc1 DUV
§ Next:

– Practical 2 (available on BB to be done by the END of
week 11):
§ On BB template .e code and guidance on verification strategy.

