COMS30026 Design Verification

High-level Verification
with specman and e

Part 1: Introduction

Kerstin Eder

Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

-Vé University of Department 0 f?
BRISTOL COMPUTER SCIENCE ¢~



https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

High-level Verification

= State-of-the-art Verification Methodology
— Focus on Automation of the Verification Process

— Tools: originally from Verisity and now from Cadence (who bought
Verisity in April 2005)
= Specman Elite (SN) and
= “e” verification language



High-level Verification

= State-of-the-art Verification Methodology
— Focus on Automation of the Verification Process

— Tools: originally from Verisity and now from Cadence (who bought
Verisity in April 2005)
= Specman Elite (SN) and
= “e” verification language

= EDA Software Access

— Access to specman and the Cadence verification tools should
automatically be enabled if you follow the instructions on EDA
Software Access as described online at
https://uobdv.github.io/Design-Verification/

= For those taking this unit with coursework, it is beneficial for you to
work through at least 75% of the Specman Fundamentals for Block-
Level Environment Developers online training course.

[Credits: The material for this lecture is adapted from Verisity/Cadence training material.]


https://uobdv.github.io/Design-Verification/

SN Main Enabling Technologies

= Constraint-driven Test Generation
— Create lots of meaningful tests quickly. ©
— Control over automatic test generation.
— Capture constraints from specification and verification plan.



SN Main Enabling Technologies

= Constraint-driven Test Generation
— Create lots of meaningful tests quickly. ©
— Control over automatic test generation.
— Capture constraints from specification and verification plan.

= Data and Temporal Checking

— Self-checking modules ensure data correctness and satisfaction
of temporal properties.

— Checks are always active.
= Unless turned off by: set check IGNORE ;-)



SN Main Enabling Technologies

= Constraint-driven Test Generation
— Create lots of meaningful tests quickly. ©
— Control over automatic test generation.
— Capture constraints from specification and verification plan.

Data and Temporal Checking

— Self-checking modules ensure data correctness and satisfaction
of temporal properties.

— Checks are always active.
= Unless turned off by: set check IGNORE ;-)

= Functional Coverage Collection and Analysis
— Automatic functional coverage collection.
— Analyse progress against functional coverage metrics.

Promotes Coverage-Driven Verification (CDV) .



SN Verification Environment

Specification Functional Verification Plan

Specman Elite Verification System

Constraint—driven Data and Temporal Functioanl Coverage
Test Generation Checking Analysis
HDL Simulator

?

HDL Models




W Complete SN Verification Process

Verification
Plan

Test
Cases

—» Test 1 Test 2 Testbase Test n-1 Test n

CovErEE —V[Checklng]«
Metrics \ T
Generating Driving | Collecting
;[ Stimulus | [Stimulus} DUV »[ Output

DUV | — l

Spec
[ Coverage J

The key is the Verification Plan!



Complete SN Verification Process

Verification
Plan

Test
Cases

—» Test 1 Test 2 Testbase Test n-1 Test n

CovErEE —V[Checklng]«

Metrics \\ T
enerating Driving | Collecting
;[ Stlmulus | [Stimulus} DUV »[ Output ]
DUV | ~ l
Spec _

Coverage-driven
test generation

Coverage J

\.

The key is the Verification Plan!



The e Language: A Fresh Separation of Concerns

Yoav Hollander

Matthew Morley

Amos Noy

Verisity Ltd., 8 Hamelacha St., Rosh-Ha-Ain 48091, Israel

December 20, 2000

Abstract

The e programming language enjoys widespread use in the
microchip industry with applications to specification, mod-
eling, testing and verification of hardware systems and their
operating environments. Unique features of e include a com-
bination of object oriented and constraint oriented mecha-
nisms for the specification of data formats and interdepen-
dencies, interesting mechanisms of inheritance, and an effi-
cient combination of interpreted and compiled code. Since
the language is also extensiblet serves as a living, industrial
scale, implementation and application of the aspect oriented
programming paradigm. This paper briefly describes the e
language highlighting its novel features and their particular
suitability to the task of hardware verification, and reports
on our experience of aspect oriented programming in this in-
tense commercial setting.

crosscut the system'’s class and module structure.
Much of the complexity and brittleness in existing
systemns appears to stem from the way in which
the implementation of these kinds of concerns
comes to be intertwined throughout the code.”

& :

Mezini and Lieberherr [4) similarly observe that while
object oriented techniques have given the programmer
excellent data abstraction mechanisms, objects them-
selves are cumbersome when it comes to expressing
aspects of behaviour that affect several data types. Con-
versely, OOP fails in naturally facilitating non-invasive
extension mechanisms for layering new functionality
over existing code. Essentially the same issue motivates
the SOP community [2], and authors such as Laue-
sen [5], Wilde [7], Fisler [8] amongst many others.

Hollander, Y.; Morley, M.; Noy, A., "The e language: a fresh separation of
concerns," in Technology of Object-Oriented Languages and Systems, 2001.
TOOLS 38. Proceedings , vol., no., pp.41-50, 2001 [” )
DOI: 10.1109/TOOLS.2001.911754



http://dx.doi.org/10.1109/TOOLS.2001.911754

Basics of the "e” Language

19l

An “e” component is a representation of the “rest of
the world” as seen from an interface of the DUV.

= High-level language for writing verification environments:
— test benches
— coverage models
— test generators and checkers
= “e” supports:
— Modular aspect-oriented design
— high-level data types
— pseudo-random constrained-based data generation
— events
— high-level checking
— checking of basic timing properties

11



Aspect-oriented Programming

= AOP is the “next step up” from object-oriented
programming.

— Testcases have specific purposes:
» Does the parity check on packets work?
= Are the timing properties of the transmission protocol satisfied?

— Both are different concerns: They are orthogonal!
— Two aspects of same application DUV.

12



Aspect-oriented Programming

= AOP is the “next step up” from object-oriented
programming.
— Testcases have specific purposes:

» Does the parity check on packets work?
= Are the timing properties of the transmission protocol satisfied?

— Both are different concerns: They are orthogonal!
— Two aspects of same application DUV.

= AOP provides mechanisms to separate these two concerns
into separate aspects of the verification environment.

= Well-defined techniques for adding declarations, inserting
or replacing code from the outside of a class, without

editing the original class. |
13



File Format

An “e” code segment is enclosed with a begin-code
marker <’ and an end-code marker ‘>,

— Both the begin-code marker and the end-code markers must be
placed at the beginning of a line (left-most), with no other text on
that same line.

Example “e” code segment:

<l
import cpu test env;
‘>

Several e code segments can appear in one file, each
segment consists of one or more statements. C

14



Comments

“e” files begin with a comment!

= This comment ends when first
begin-code marker <‘ is found.

Why is this
_ a good idea
= Comments in code segments can for a

be marked with —or / /. verification
language?

= Use end-code ‘> and begin-code
<’ markers to write several
consecutive lines of comment in
the middle of code segments.

15



Comments

“e” files begin with a comment!

= This comment ends when first
begin-code marker <‘ is found.

Why is this
_ a good idea
= Comments in code segments can for a

be marked with —or / /. verification
language?

= Use end-code ‘> and begin-code
<’ markers to write several
consecutive lines of comment in
the middle of code segments.

16



Syntactic Elements

= Statements are top-level constructs.

— Valid within <" and "> markers.
— Statements always end with a semicolon “;”!

17



Syntactic Elements

= Statements are top-level constructs.

— Valid within <" and "> markers.
— Statements always end with a semicolon “;”!

= Struct members are second-level constructs.
— Valid only within a struct definition.

— They are associated with dynamic constructs of a testbench e.g.
stimulus.

— (There are also Units which are associated with testbench constructs
such as drivers/checkers/scoreboards. They exist for the duration of the
simulation.)

18



Syntactic Elements

= Statements are top-level constructs.

— Valid within <" and "> markers.
— Statements always end with a semicolon “;”!

= Struct members are second-level constructs.
— Valid only within a struct definition.

— They are associated with dynamic constructs of a testbench e.g.
stimulus.

— (There are also Units which are associated with testbench constructs
such as drivers/checkers/scoreboards. They exist for the duration of the
simulation.)

= Actions are third-level constructs.

— Valid only when associated with a struct member, such as a method or
an event.

19



Syntactic Elements

Statements are top-level constructs.
— Valid within <" and "> markers.
— Statements always end with a semicolon “;”!

Struct members are second-level constructs.
— Valid only within a struct definition.

— They are associated with dynamic constructs of a testbench e.g.
stimulus.

— (There are also Units which are associated with testbench constructs
such as drivers/checkers/scoreboards. They exist for the duration of the
simulation.)

Actions are third-level constructs.
— Valid only when associated with a struct member, such as a method or
an event.

Expressions are lower-level constructs.

(13 ”

— Can be used only within another “e” construct. |



Key Statement Types

struct Defines a new data structure.

unit Defines a new unit.

type Defines an enumerated type or subtype.
extend Extends a previously defined struct/type.

define Extends the language with a definition.
define OFFSET 5;
import must be first (after defines),

otherwise the order of statements is not
critical.

... (more, see on line documentation) R

21



Structs vs Units

= Structs are the most basic building blocks in “e”.

— Used to keep data and operations together.
= packets, instructions, frames

— Can be created at run-time, i.e. they are dynamic.
— Data in structs can be generated on-the-fly.

22



Structs vs Units

= Structs are the most basic building blocks in “e”.

— Used to keep data and operations together.
= packets, instructions, frames

— Can be created at run-time, i.e. they are dynamic.
— Data in structs can be generated on-the-fly.

= Units are a special kind of struct.
— Units are static! Can be generated during test phase only.
— Allow mapping to HDL path. (Best way to connect to DUV.)

23



Structs vs Units

Structs are the most basic building blocks in “e”.

— Used to keep data and operations together.
= packets, instructions, frames

— Can be created at run-time, i.e. they are dynamic.
— Data in structs can be generated on-the-fly.

Units are a special kind of struct.
— Units are static! Can be generated during test phase only.
— Allow mapping to HDL path. (Best way to connect to DUV.)

Units are used for generators/checkers/monitors, bus
functional models (BFMs), self-checking structures,

overall testbench.

— BFMs package all bus functional procedures of an interface, i.e. all transactions
supported by the interface.

— The transactions are abstracted from a physical-level interface to a procedural
interface. B

— BFMs can be used to generate stimulus as well as to check the DUV response. ”



Structs and Struct Members

Members are 2nd-level constructs: Valid only within a struct definition.
— A simple struct for packets to be used in comms protocol:

type packet kind: [atm, eth];
struct packet {

len: uint;

keep len < 256;

kind: packet kind;
}i

keep: Specifies rules for constraints to influence data generation.

25



Structs and Struct Members

Members are 2nd-level constructs: Valid only within a struct definition.
— A simple struct for packets to be used in comms protocol:

type packet kind: [atm, eth];
struct packet {

len: uint;

keep len < 256;

kind: packet kind;
}i

keep: Specifies rules for constraints to influence data generation.
— Another example struct for transactions:

struct transaction {
address: uint;
data: list of uint;
transform(multiple:uint) is empty;

}i |
26



Struct Members

Fields: Define data with an explicit type to be a member of the
enclosing struct.

27



Struct Members

Fields: Define data with an explicit type to be a member of the
enclosing struct.

Method: Define an operational procedure that can manipulate fields
of the enclosing struct and access run-time values in DUV.

28



Struct Members

Fields: Define data with an explicit type to be a member of the
enclosing struct.
Method: Define an operational procedure that can manipulate fields
of the enclosing struct and access run-time values in DUV.
Subtype declaration: Defines an instance of a parent struct in
which specific members have particular values or behaviour.

— Use when for conditional constraints on possible values of a field.

29



Struct Members

Fields: Define data with an explicit type to be a member of the
enclosing struct.

Method: Define an operational procedure that can manipulate fields
of the enclosing struct and access run-time values in DUV.
Subtype declaration: Defines an instance of a parent struct in
which specific members have particular values or behaviour.

— Use when for conditional constraints on possible values of a field.

Constraint declaration: Influences distribution of values generated

for data entries and the order in which values are generated, e.g.
keep len < 256;

30



Struct Members

Fields: Define data with an explicit type to be a member of the
enclosing struct.

Method: Define an operational procedure that can manipulate fields
of the enclosing struct and access run-time values in DUV.

Subtype declaration: Defines an instance of a parent struct in
which specific members have particular values or behaviour.
— Use when for conditional constraints on possible values of a field.

Constraint declaration: Influences distribution of values generated

for data entries and the order in which values are generated, e.g.
keep len < 256;

Coverage declaration: Defines functional verification goals and
collects data on how well the testbench is meeting these goals.

cover event-type is coverage-item-definition;

31



Struct Members

Fields: Define data with an explicit type to be a member of the
enclosing struct.

Method: Define an operational procedure that can manipulate fields
of the enclosing struct and access run-time values in DUV.

Subtype declaration: Defines an instance of a parent struct in

which specific members have particular values or behaviour.
— Use when for conditional constraints on possible values of a field.

Constraint declaration: Influences distribution of values generated

for data entries and the order in which values are generated, e.g.
keep len < 256;

Coverage declaration: Defines functional verification goals and
collects data on how well the testbench is meeting these goals.
cover event-type is coverage-item-definition;

13 7

Temporal declaration: Defines “e” events and their associated
actions, e.g. event -

32



type PCICommandType: [ IO READ=0x2, IO WRITE=0x3,
MEM READ=0x6, MEM WRITE=0x7 ];
struct pci transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual address: bool;
when dual address pci transaction ({
address2: uint;
i
bus id: uint;
event initiate;
on initiate {
out("An event was initiated on bus ”, bus id);
i
cover initiate is {
item command;
i
transform(multiple: uint) is only {
address = address * multiple;



type P struct ]pe: [ I0 READ=0x2, IO WRITE=0x3,
MEM READ=f i WRITE=0x7 ]
struct pci_ transaction like tra
command: PCICommandType;

keep soft data.sizei;:{ field ];
dual address: bool;

when dual address pci transaction ({

address2: yi=+—
}s ! field |
bus id: uint;

event initiate;
on initiate {
out("An event was initiated on bus ", bus_id);
}i
cover initiate is {
item command;

}i
transform(multiple: uint) is only {
address = address * multiple;



type PCICommandType: [ IO READ=0x2, IO WRITE=0x3,
MEM READ=0x6, MEM WRITE=0x7 ];
struct pci transaction like transaction {

command: PCICommandType; constraint
keep soft data.size() in [0--7]L=::[dedaEMOnJ
dual address: bool;

when dual address pci transaction ({
address2: uint;

struct transaction {
address: uint;

data: list of uint;
transform(multiple:uint) is empty;

}i
transform(multiple: uint) is only {

address = address * multiple; )
}i [/

A
QA \\
DRI

/



type PCICommandType: [ IO READ=0x2, IO WRITE=0x3,
MEM READ=0x6, MEM WRITE=0x7 ];

struct pci transaction like transaction {
command: PCICommandType; d'?P$
keep soft data.size() in [0..7]; etinition

dual address: bool;
when dual address pci transaction ({
address2: uint;

subtype Jnt;
definition :
late;

on initiate {

out("An event was initiated on bus ", bus_id);
}i
cover initiate is {

item command;

}i
transform(multiple: uint) is only {
address = address * multiple;



type PCICommandType: [ IO READ=0x2, IO WRITE=0x3,
MEM READ=0x6, MEM WRITE=0x7 ];
struct pci transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual address: bool;
when dual address pci transaction ({
address2: uint;
i
bus id: uint;
event initiate;
on initiate {
out("An event was initiated on bus ”, bus id);
i
cover 1initiate is {
item command;

}; Qethod ]
transform(multiple: uint) is only {

address = address * multiple;




type PCICommandType: [ IO READ=0x2, IO WRITE=0x3,
MEM READ=0x6, MEM WRITE=0x7 ];
struct pci transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual address: bool;
when dual address pci transaction ({
address2: uint;
}i
bus id: uint;
event initiate;-ﬁ event ]
on initiate {
out("An event was initiated on bus ”, bus id);

7 S _ coverage
cover 1lnitiate 1s { declaration

item command;

}i
transform(multiple: uint) is only {
address = address * multiple;



Predefined structs

= An “e” environment contains by default a number of
predefined structs (and of course some user-defined ones).

é[packing] | session | | files | [ sys | [ scheduler) [simulator]é

= The system struct sys is the root for user-defined structs.
— Must instantiate user-defined structs under sys.
— Contents of sys can be viewed via SN GUI.

=  Similartomain in C. -

39



Instantiation under sys

Every user-defined struct (including units) must be
instantiated as a (sub)field of sys, e.q.

struct packet {
address : uint (bits : 2);
payload : uint (bytes : 64);
}i

unit router bfm {

packets : list of packet;
}i

extend sys {

router : router bfm is instance;

}i



Generation with SN

= Offline (prior to sim, i.e. in Generate phase):

— Use Generate or Test command
= Test calls Generate command!

— Recursively generates everything under sys.
— BEWARE: Can consume a lot of memory!

= Online (during sim):

— Allows to dynamically generate values based on
DUV state.

— Use gen action.
" gen gen-item [keeping {...}]

41



Specifying and Using Constraints

keep constraint-bool-expr;
— where constraint-bool-expr is a simple or compound Boolean expression.
= State restrictions on the values generated for fields in the struct.

= Describe the required relationships between field values and
other struct items.
struct packet {
kind : [tx, rx];
len : uint;
keep kind==tx => len==16;
—-keep kind!=tx or len==16; exactly the same effect
—--when tx packet { keep len==16; }; exactly same effect

i
= Hard constraints are applied when the enclosing struct is
generated. If constraints can't be met, the generator | issues.

a constraint contradiction message. -
42



Generation Order

= Generation order is important:
— It influences the distribution of values!

struct packet {
kind : [tx, rXx];
len : uint;
keep len>16 => kind==rx;

}i

— If kind is generated first, kind is tx about half the
time because there are only two legal values for kind.

— If 1en is generated first, the distribution is different.

— Consider using: keep gen (kind) before (len});
43



Using Soft Constraints

Using keep soft (e.g.to set default values) and select:

struct transaction {
address : uint;

keep soft address == select {
10: [0..49];
60: 50;
30: [51..99];
}i
}i

NOTE: Soft constraints can be overridden by hard constraints!

44



Using Soft Constraints

= Using keep soft (e.g.to set default values) and select:

struct transaction {
address : uint;

keep soft address == select {
10: [0..49];
60: 50;
30: [51..99];
}i
}i

= NOTE: Soft constraints can be overridden by hard constraints!

extend instruction {

keep soft op code == select {

Does not 40: [ADD, ADDI, SUB, SUBI];
need to add 20: [XOR, XORI];

up to 100! 10: [JMP, CALL, RET, NOP];

}i:
}i

= In practice, getting the weights/bias right (for coverage closure

requires significant engineering skill. e



\We have now covered

= Basics of the “e” verification language and

some features of SN.

— If you take this unit with coursework, you should be
registered for the Specman Fundamentals for Block-

Level Environment Developers online training course,
which introduces you to SN and e in more detail and

provides you with exercises.

= |[n Part 2 we will explore more advanced
features of the e language and also how SN
synchronizes with the simulator. L
L %))
46



