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High-level Verification
§ State-of-the-art Verification Methodology

– Focus on Automation of the Verification Process
– Tools: originally from Verisity and now from Cadence (who bought 

Verisity in April 2005)
§ Specman Elite (SN) and 
§ “e” verification language 
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High-level Verification
§ State-of-the-art Verification Methodology

– Focus on Automation of the Verification Process
– Tools: originally from Verisity and now from Cadence (who bought 

Verisity in April 2005)
§ Specman Elite (SN) and 
§ “e” verification language 

§ EDA Software Access
– Access to specman and the Cadence verification tools should 

automatically be enabled if you follow the instructions on EDA 
Software Access as described online at 
https://uobdv.github.io/Design-Verification/

§ For those taking this unit with coursework, it is beneficial for you to 
work through at least 75% of the Specman Fundamentals for Block-
Level Environment Developers online training course.

[Credits: The material for this lecture is adapted from Verisity/Cadence training material.]

https://uobdv.github.io/Design-Verification/
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SN Main Enabling Technologies
§ Constraint-driven Test Generation

– Create lots of meaningful tests quickly. J
– Control over automatic test generation.
– Capture constraints from specification and verification plan.
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– Self-checking modules ensure data correctness and satisfaction 

of temporal properties.
– Checks are always active.  

§ Unless turned off by: set check IGNORE ;-)
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SN Main Enabling Technologies
§ Constraint-driven Test Generation

– Create lots of meaningful tests quickly. J
– Control over automatic test generation.
– Capture constraints from specification and verification plan.

§ Data and Temporal Checking
– Self-checking modules ensure data correctness and satisfaction 

of temporal properties.
– Checks are always active.  

§ Unless turned off by: set check IGNORE ;-)

§ Functional Coverage Collection and Analysis
– Automatic functional coverage collection.
– Analyse progress against functional coverage metrics.

§ Promotes Coverage-Driven Verification (CDV)
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SN Verification Environment

HDL Models
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Basics of the “e” Language

§ High-level language for writing verification environments:
– test benches
– coverage models 
– test generators and checkers

§ “e” supports:
– Modular aspect-oriented design 
– high-level data types
– pseudo-random constrained-based data generation
– events 
– high-level checking
– checking of basic timing properties

An “e” component is a representation of the “rest of 
the world” as seen from an interface of the DUV.
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Aspect-oriented Programming
§ AOP is the “next step up” from object-oriented 

programming.
– Testcases have specific purposes:

§ Does the parity check on packets work?
§ Are the timing properties of the transmission protocol satisfied?

– Both are different concerns: They are orthogonal!
– Two aspects of same application DUV.
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Aspect-oriented Programming
§ AOP is the “next step up” from object-oriented 

programming.
– Testcases have specific purposes:

§ Does the parity check on packets work?
§ Are the timing properties of the transmission protocol satisfied?

– Both are different concerns: They are orthogonal!
– Two aspects of same application DUV.

§ AOP provides mechanisms to separate these two concerns 
into separate aspects of the verification environment. 

§ Well-defined techniques for adding declarations, inserting 
or replacing code from the outside of a class, without 
editing the original class.
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File Format
§ An “e” code segment is enclosed with a begin-code 

marker <‘ and an end-code marker ‘>.
– Both the begin-code marker and the end-code markers must be 

placed at the beginning of a line (left-most), with no other text on 
that same line.

§ Example “e” code segment:

<‘
import cpu_test_env;
‘>

§ Several e code segments can appear in one file, each 
segment consists of one or more statements.
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Comments
“e” files begin with a comment!
§ This comment ends when first 

begin-code marker <‘ is found.
§ Comments in code segments can 

be marked with – or //.

§ Use end-code ‘> and begin-code 
<‘ markers to write several 
consecutive lines of comment in 
the middle of code segments.

Why is this 
a good idea 

for a 
verification 
language?
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Syntactic Elements
§ Statements are top-level constructs.

– Valid within <‘ and ‘> markers.
– Statements always end with a semicolon “;”!
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such as drivers/checkers/scoreboards. They exist for the duration of the 
simulation.)
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Syntactic Elements
§ Statements are top-level constructs.

– Valid within <‘ and ‘> markers.
– Statements always end with a semicolon “;”!

§ Struct members are second-level constructs.
– Valid only within a struct definition.
– They are associated with dynamic constructs of a testbench e.g. 

stimulus.
– (There are also Units which are associated with testbench constructs 

such as drivers/checkers/scoreboards. They exist for the duration of the 
simulation.)

§ Actions are third-level constructs.
– Valid only when associated with a struct member, such as a method or 

an event.

§ Expressions are lower-level constructs.
– Can be used only within another “e” construct.
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Key Statement Types
struct Defines a new data structure.
unit Defines a new unit.
type Defines an enumerated type or subtype.
extend Extends a previously defined struct/type.
define Extends the language with a definition. 

define OFFSET 5;

import must be first (after defines), 
otherwise the order of statements is not
critical.

... (more, see on line documentation)
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Structs vs Units
§ Structs are the most basic building blocks in “e”.

– Used to keep data and operations together. 
§ packets, instructions, frames

– Can be created at run-time, i.e. they are dynamic.
– Data in structs can be generated on-the-fly.
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– Units are static! Can be generated during test phase only.
– Allow mapping to HDL path. (Best way to connect to DUV.)
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Structs vs Units
§ Structs are the most basic building blocks in “e”.

– Used to keep data and operations together. 
§ packets, instructions, frames

– Can be created at run-time, i.e. they are dynamic.
– Data in structs can be generated on-the-fly.

§ Units are a special kind of struct.
– Units are static! Can be generated during test phase only.
– Allow mapping to HDL path. (Best way to connect to DUV.)

§ Units are used for generators/checkers/monitors, bus 
functional models (BFMs), self-checking structures, 
overall testbench.

– BFMs package all bus functional procedures of an interface, i.e. all transactions 
supported by the interface. 

– The transactions are abstracted from a physical-level interface to a procedural 
interface. 

– BFMs can be used to generate stimulus as well as to check the DUV response. 
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Structs and Struct Members
§ Members are 2nd-level constructs: Valid only within a struct definition.

– A simple struct for packets to be used in comms protocol:

type packet_kind: [atm, eth];
struct packet {

len: uint;
keep len < 256; 
kind: packet_kind;

};

keep: Specifies rules for constraints to influence data generation.



26

Structs and Struct Members
§ Members are 2nd-level constructs: Valid only within a struct definition.

– A simple struct for packets to be used in comms protocol:

type packet_kind: [atm, eth];
struct packet {

len: uint;
keep len < 256; 
kind: packet_kind;

};

keep: Specifies rules for constraints to influence data generation.
– Another example struct for transactions:

struct transaction {

address: uint;
data: list of uint;
transform(multiple:uint) is empty;

};
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Struct Members
§ Fields: Define data with an explicit type to be a member of the 

enclosing struct.
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§ Method: Define an operational procedure that can manipulate fields 

of the enclosing struct and access run-time values in DUV.



29

Struct Members
§ Fields: Define data with an explicit type to be a member of the 

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields 

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in 

which specific members have particular values or behaviour.  
– Use when for conditional constraints on possible values of a field.
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Struct Members
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for data entries and the order in which values are generated, e.g. 
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§ Fields: Define data with an explicit type to be a member of the 
enclosing struct.

§ Method: Define an operational procedure that can manipulate fields 
of the enclosing struct and access run-time values in DUV.
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enclosing struct.
§ Method: Define an operational procedure that can manipulate fields 

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in 

which specific members have particular values or behaviour.  
– Use when for conditional constraints on possible values of a field.

§ Constraint declaration: Influences distribution of values generated 
for data entries and the order in which values are generated, e.g. 
keep len < 256;

§ Coverage declaration: Defines functional verification goals and 
collects data on how well the testbench is meeting these goals. 

cover event-type is coverage-item-definition; 
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Struct Members
§ Fields: Define data with an explicit type to be a member of the 

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields 

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in 

which specific members have particular values or behaviour.  
– Use when for conditional constraints on possible values of a field.

§ Constraint declaration: Influences distribution of values generated 
for data entries and the order in which values are generated, e.g. 
keep len < 256;

§ Coverage declaration: Defines functional verification goals and 
collects data on how well the testbench is meeting these goals. 

cover event-type is coverage-item-definition; 
§ Temporal declaration: Defines “e” events and their associated 

actions, e.g. event



type PCICommandType: [ IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7 ];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};
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type PCICommandType: [ IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7 ];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

constraint 
declaration

struct transaction {
address: uint;
data: list of uint;
transform(multiple:uint) is empty;

};
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Predefined structs
§ An “e” environment contains by default a number of 

predefined structs (and of course some user-defined ones).

§ The system struct sys is the root for user-defined structs.
– Must instantiate user-defined structs under sys.
– Contents of sys can be viewed via SN GUI.

§ Similar to main in C. 

global

packing session files sys scheduler simulator

all user-defined
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Instantiation under sys
Every user-defined struct (including units) must be 
instantiated as a (sub)field of sys, e.g.

struct packet {
address : uint (bits : 2);
payload : uint (bytes : 64);

};

unit router_bfm {
packets : list of packet;

};

extend sys {
router : router_bfm is instance;

};
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Generation with SN
§ Offline (prior to sim, i.e. in Generate phase):

– Use Generate or Test command
§ Test calls Generate command!

– Recursively generates everything under sys.
– BEWARE: Can consume a lot of memory!

§ Online (during sim):
– Allows to dynamically generate values based on 

DUV state.
– Use gen action.

§ gen gen-item [keeping {...}]
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Specifying and Using Constraints
keep constraint-bool-expr;

– where constraint-bool-expr is a simple or compound Boolean expression.
§ State restrictions on the values generated for fields in the struct.
§ Describe the required relationships between field values and 

other struct items.
struct packet {
kind : [tx, rx];
len : uint;
keep kind==tx => len==16;

--keep kind!=tx or len==16; exactly the same effect
--when tx packet { keep len==16; }; exactly same effect
};

§ Hard constraints are applied when the enclosing struct is 
generated. If constraints can't be met, the generator issues 
a constraint contradiction message.
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§ Generation order is important: 
– It influences the distribution of values!

struct packet {
kind : [tx, rx];
len : uint;
keep len>16 => kind==rx;

};

– If kind is generated first, kind is tx about half the 
time because there are only two legal values for kind.

– If len is generated first, the distribution is different.
– Consider using: keep gen (kind) before (len);

Generation Order
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Using Soft Constraints
§ Using keep soft (e.g. to set default values) and select:

struct transaction {
address : uint;
keep soft address == select {

10: [0..49];
60: 50;
30: [51..99];

};
};

§ NOTE: Soft constraints can be overridden by hard constraints!
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Using Soft Constraints
§ Using keep soft (e.g. to set default values) and select:

struct transaction {
address : uint;
keep soft address == select {

10: [0..49];
60: 50;
30: [51..99];

};
};

§ NOTE: Soft constraints can be overridden by hard constraints!
extend instruction {

keep soft op_code == select {
40: [ADD, ADDI, SUB, SUBI];
20: [XOR, XORI];
10: [JMP, CALL, RET, NOP];

};
};

§ In practice, getting the weights/bias right (for coverage closure) 
requires significant engineering skill.

Does not 
need to add 
up to 100!
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We have now covered

§ Basics of the “e” verification language and 
some features of SN.
– If you take this unit with coursework, you should be 

registered for the Specman Fundamentals for Block-
Level Environment Developers online training course, 
which introduces you to SN and e in more detail and 
provides you with exercises.

§ In Part 2 we will explore more advanced 
features of the e language and also how SN 
synchronizes with the simulator.


