
COMS30026 Design Verification

High-level Verification
with specman and e

Part 1: Introduction

Kerstin Eder
Trustworthy Systems Laboratory

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

Department of
COMPUTER SCIENCE

https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/
https://www.bristol.ac.uk/engineering/research/trustworthy-systems-laboratory/

2

High-level Verification
§ State-of-the-art Verification Methodology

– Focus on Automation of the Verification Process
– Tools: originally from Verisity and now from Cadence (who bought

Verisity in April 2005)
§ Specman Elite (SN) and
§ “e” verification language

3

High-level Verification
§ State-of-the-art Verification Methodology

– Focus on Automation of the Verification Process
– Tools: originally from Verisity and now from Cadence (who bought

Verisity in April 2005)
§ Specman Elite (SN) and
§ “e” verification language

§ EDA Software Access
– Access to specman and the Cadence verification tools should

automatically be enabled if you follow the instructions on EDA
Software Access as described online at
https://uobdv.github.io/Design-Verification/

§ For those taking this unit with coursework, it is beneficial for you to
work through at least 75% of the Specman Fundamentals for Block-
Level Environment Developers online training course.

[Credits: The material for this lecture is adapted from Verisity/Cadence training material.]

https://uobdv.github.io/Design-Verification/

4

SN Main Enabling Technologies
§ Constraint-driven Test Generation

– Create lots of meaningful tests quickly. J
– Control over automatic test generation.
– Capture constraints from specification and verification plan.

5

SN Main Enabling Technologies
§ Constraint-driven Test Generation

– Create lots of meaningful tests quickly. J
– Control over automatic test generation.
– Capture constraints from specification and verification plan.

§ Data and Temporal Checking
– Self-checking modules ensure data correctness and satisfaction

of temporal properties.
– Checks are always active.

§ Unless turned off by: set check IGNORE ;-)

6

SN Main Enabling Technologies
§ Constraint-driven Test Generation

– Create lots of meaningful tests quickly. J
– Control over automatic test generation.
– Capture constraints from specification and verification plan.

§ Data and Temporal Checking
– Self-checking modules ensure data correctness and satisfaction

of temporal properties.
– Checks are always active.

§ Unless turned off by: set check IGNORE ;-)

§ Functional Coverage Collection and Analysis
– Automatic functional coverage collection.
– Analyse progress against functional coverage metrics.

§ Promotes Coverage-Driven Verification (CDV)

7

SN Verification Environment

HDL Models

HDL Simulator

Functional Verification Plan

Constraint−driven
Test Generation

Data and Temporal
Checking

Specman Elite Verification System
Functioanl Coverage
Analysis

Specification

8

Complete SN Verification Process
Verification

Plan

Coverage
Metrics

Test
Cases

DUV
Spec

Test 1 Test 2 Test n-1 Test n

Driving
Stimulus

Collecting
Output

Coverage

Generating
Stimulus

Checking

DUV

Testbase

The key is the Verification Plan!

9

Complete SN Verification Process
Verification

Plan

Coverage
Metrics

Test
Cases

DUV
Spec

Test 1 Test 2 Test n-1 Test n

Driving
Stimulus

Collecting
Output

Coverage

Generating
Stimulus

Checking

DUV

Testbase

The key is the Verification Plan!

Coverage-driven
test generation

Hollander, Y.; Morley, M.; Noy, A., "The e language: a fresh separation of
concerns," in Technology of Object-Oriented Languages and Systems, 2001.
TOOLS 38. Proceedings , vol., no., pp.41-50, 2001
DOI: 10.1109/TOOLS.2001.911754

http://dx.doi.org/10.1109/TOOLS.2001.911754

11

Basics of the “e” Language

§ High-level language for writing verification environments:
– test benches
– coverage models
– test generators and checkers

§ “e” supports:
– Modular aspect-oriented design
– high-level data types
– pseudo-random constrained-based data generation
– events
– high-level checking
– checking of basic timing properties

An “e” component is a representation of the “rest of
the world” as seen from an interface of the DUV.

12

Aspect-oriented Programming
§ AOP is the “next step up” from object-oriented

programming.
– Testcases have specific purposes:

§ Does the parity check on packets work?
§ Are the timing properties of the transmission protocol satisfied?

– Both are different concerns: They are orthogonal!
– Two aspects of same application DUV.

13

Aspect-oriented Programming
§ AOP is the “next step up” from object-oriented

programming.
– Testcases have specific purposes:

§ Does the parity check on packets work?
§ Are the timing properties of the transmission protocol satisfied?

– Both are different concerns: They are orthogonal!
– Two aspects of same application DUV.

§ AOP provides mechanisms to separate these two concerns
into separate aspects of the verification environment.

§ Well-defined techniques for adding declarations, inserting
or replacing code from the outside of a class, without
editing the original class.

14

File Format
§ An “e” code segment is enclosed with a begin-code

marker <‘ and an end-code marker ‘>.
– Both the begin-code marker and the end-code markers must be

placed at the beginning of a line (left-most), with no other text on
that same line.

§ Example “e” code segment:

<‘
import cpu_test_env;
‘>

§ Several e code segments can appear in one file, each
segment consists of one or more statements.

15

Comments
“e” files begin with a comment!
§ This comment ends when first

begin-code marker <‘ is found.
§ Comments in code segments can

be marked with – or //.

§ Use end-code ‘> and begin-code
<‘ markers to write several
consecutive lines of comment in
the middle of code segments.

Why is this
a good idea

for a
verification
language?

16

Comments
“e” files begin with a comment!
§ This comment ends when first

begin-code marker <‘ is found.
§ Comments in code segments can

be marked with – or //.

§ Use end-code ‘> and begin-code
<‘ markers to write several
consecutive lines of comment in
the middle of code segments.

Why is this
a good idea

for a
verification
language?

17

Syntactic Elements
§ Statements are top-level constructs.

– Valid within <‘ and ‘> markers.
– Statements always end with a semicolon “;”!

18

Syntactic Elements
§ Statements are top-level constructs.

– Valid within <‘ and ‘> markers.
– Statements always end with a semicolon “;”!

§ Struct members are second-level constructs.
– Valid only within a struct definition.
– They are associated with dynamic constructs of a testbench e.g.

stimulus.
– (There are also Units which are associated with testbench constructs

such as drivers/checkers/scoreboards. They exist for the duration of the
simulation.)

19

Syntactic Elements
§ Statements are top-level constructs.

– Valid within <‘ and ‘> markers.
– Statements always end with a semicolon “;”!

§ Struct members are second-level constructs.
– Valid only within a struct definition.
– They are associated with dynamic constructs of a testbench e.g.

stimulus.
– (There are also Units which are associated with testbench constructs

such as drivers/checkers/scoreboards. They exist for the duration of the
simulation.)

§ Actions are third-level constructs.
– Valid only when associated with a struct member, such as a method or

an event.

20

Syntactic Elements
§ Statements are top-level constructs.

– Valid within <‘ and ‘> markers.
– Statements always end with a semicolon “;”!

§ Struct members are second-level constructs.
– Valid only within a struct definition.
– They are associated with dynamic constructs of a testbench e.g.

stimulus.
– (There are also Units which are associated with testbench constructs

such as drivers/checkers/scoreboards. They exist for the duration of the
simulation.)

§ Actions are third-level constructs.
– Valid only when associated with a struct member, such as a method or

an event.

§ Expressions are lower-level constructs.
– Can be used only within another “e” construct.

21

Key Statement Types
struct Defines a new data structure.
unit Defines a new unit.
type Defines an enumerated type or subtype.
extend Extends a previously defined struct/type.
define Extends the language with a definition.

define OFFSET 5;

import must be first (after defines),
otherwise the order of statements is not
critical.

... (more, see on line documentation)

22

Structs vs Units
§ Structs are the most basic building blocks in “e”.

– Used to keep data and operations together.
§ packets, instructions, frames

– Can be created at run-time, i.e. they are dynamic.
– Data in structs can be generated on-the-fly.

23

Structs vs Units
§ Structs are the most basic building blocks in “e”.

– Used to keep data and operations together.
§ packets, instructions, frames

– Can be created at run-time, i.e. they are dynamic.
– Data in structs can be generated on-the-fly.

§ Units are a special kind of struct.
– Units are static! Can be generated during test phase only.
– Allow mapping to HDL path. (Best way to connect to DUV.)

24

Structs vs Units
§ Structs are the most basic building blocks in “e”.

– Used to keep data and operations together.
§ packets, instructions, frames

– Can be created at run-time, i.e. they are dynamic.
– Data in structs can be generated on-the-fly.

§ Units are a special kind of struct.
– Units are static! Can be generated during test phase only.
– Allow mapping to HDL path. (Best way to connect to DUV.)

§ Units are used for generators/checkers/monitors, bus
functional models (BFMs), self-checking structures,
overall testbench.

– BFMs package all bus functional procedures of an interface, i.e. all transactions
supported by the interface.

– The transactions are abstracted from a physical-level interface to a procedural
interface.

– BFMs can be used to generate stimulus as well as to check the DUV response.

25

Structs and Struct Members
§ Members are 2nd-level constructs: Valid only within a struct definition.

– A simple struct for packets to be used in comms protocol:

type packet_kind: [atm, eth];
struct packet {

len: uint;
keep len < 256;
kind: packet_kind;

};

keep: Specifies rules for constraints to influence data generation.

26

Structs and Struct Members
§ Members are 2nd-level constructs: Valid only within a struct definition.

– A simple struct for packets to be used in comms protocol:

type packet_kind: [atm, eth];
struct packet {

len: uint;
keep len < 256;
kind: packet_kind;

};

keep: Specifies rules for constraints to influence data generation.
– Another example struct for transactions:

struct transaction {

address: uint;
data: list of uint;
transform(multiple:uint) is empty;

};

27

Struct Members
§ Fields: Define data with an explicit type to be a member of the

enclosing struct.

28

Struct Members
§ Fields: Define data with an explicit type to be a member of the

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields

of the enclosing struct and access run-time values in DUV.

29

Struct Members
§ Fields: Define data with an explicit type to be a member of the

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in

which specific members have particular values or behaviour.
– Use when for conditional constraints on possible values of a field.

30

Struct Members
§ Fields: Define data with an explicit type to be a member of the

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in

which specific members have particular values or behaviour.
– Use when for conditional constraints on possible values of a field.

§ Constraint declaration: Influences distribution of values generated
for data entries and the order in which values are generated, e.g.
keep len < 256;

31

§ Fields: Define data with an explicit type to be a member of the
enclosing struct.

§ Method: Define an operational procedure that can manipulate fields
of the enclosing struct and access run-time values in DUV.

§ Subtype declaration: Defines an instance of a parent struct in
which specific members have particular values or behaviour.
– Use when for conditional constraints on possible values of a field.

§ Constraint declaration: Influences distribution of values generated
for data entries and the order in which values are generated, e.g.
keep len < 256;

Struct Members
§ Fields: Define data with an explicit type to be a member of the

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in

which specific members have particular values or behaviour.
– Use when for conditional constraints on possible values of a field.

§ Constraint declaration: Influences distribution of values generated
for data entries and the order in which values are generated, e.g.
keep len < 256;

§ Coverage declaration: Defines functional verification goals and
collects data on how well the testbench is meeting these goals.

cover event-type is coverage-item-definition;

32

Struct Members
§ Fields: Define data with an explicit type to be a member of the

enclosing struct.
§ Method: Define an operational procedure that can manipulate fields

of the enclosing struct and access run-time values in DUV.
§ Subtype declaration: Defines an instance of a parent struct in

which specific members have particular values or behaviour.
– Use when for conditional constraints on possible values of a field.

§ Constraint declaration: Influences distribution of values generated
for data entries and the order in which values are generated, e.g.
keep len < 256;

§ Coverage declaration: Defines functional verification goals and
collects data on how well the testbench is meeting these goals.

cover event-type is coverage-item-definition;
§ Temporal declaration: Defines “e” events and their associated

actions, e.g. event

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

struct

field

field

field

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

constraint
declaration

struct transaction {
address: uint;
data: list of uint;
transform(multiple:uint) is empty;

};

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

type
definition

subtype
definition

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

method

type PCICommandType: [IO_READ=0x2, IO_WRITE=0x3,
MEM_READ=0x6, MEM_WRITE=0x7];

struct pci_transaction like transaction {
command: PCICommandType;
keep soft data.size() in [0..7];
dual_address: bool;
when dual_address pci_transaction {

address2: uint;
};
bus_id: uint;
event initiate;
on initiate {

out("An event was initiated on bus ”, bus_id);
};
cover initiate is {

item command;
};
transform(multiple: uint) is only {

address = address * multiple;
};

};

event

coverage
declaration

39

Predefined structs
§ An “e” environment contains by default a number of

predefined structs (and of course some user-defined ones).

§ The system struct sys is the root for user-defined structs.
– Must instantiate user-defined structs under sys.
– Contents of sys can be viewed via SN GUI.

§ Similar to main in C.

global

packing session files sys scheduler simulator

all user-defined

40

Instantiation under sys
Every user-defined struct (including units) must be
instantiated as a (sub)field of sys, e.g.

struct packet {
address : uint (bits : 2);
payload : uint (bytes : 64);

};

unit router_bfm {
packets : list of packet;

};

extend sys {
router : router_bfm is instance;

};

41

Generation with SN
§ Offline (prior to sim, i.e. in Generate phase):

– Use Generate or Test command
§ Test calls Generate command!

– Recursively generates everything under sys.
– BEWARE: Can consume a lot of memory!

§ Online (during sim):
– Allows to dynamically generate values based on

DUV state.
– Use gen action.

§ gen gen-item [keeping {...}]

42

Specifying and Using Constraints
keep constraint-bool-expr;

– where constraint-bool-expr is a simple or compound Boolean expression.
§ State restrictions on the values generated for fields in the struct.
§ Describe the required relationships between field values and

other struct items.
struct packet {
kind : [tx, rx];
len : uint;
keep kind==tx => len==16;

--keep kind!=tx or len==16; exactly the same effect
--when tx packet { keep len==16; }; exactly same effect
};

§ Hard constraints are applied when the enclosing struct is
generated. If constraints can't be met, the generator issues
a constraint contradiction message.

43

§ Generation order is important:
– It influences the distribution of values!

struct packet {
kind : [tx, rx];
len : uint;
keep len>16 => kind==rx;

};

– If kind is generated first, kind is tx about half the
time because there are only two legal values for kind.

– If len is generated first, the distribution is different.
– Consider using: keep gen (kind) before (len);

Generation Order

44

Using Soft Constraints
§ Using keep soft (e.g. to set default values) and select:

struct transaction {
address : uint;
keep soft address == select {

10: [0..49];
60: 50;
30: [51..99];

};
};

§ NOTE: Soft constraints can be overridden by hard constraints!

45

Using Soft Constraints
§ Using keep soft (e.g. to set default values) and select:

struct transaction {
address : uint;
keep soft address == select {

10: [0..49];
60: 50;
30: [51..99];

};
};

§ NOTE: Soft constraints can be overridden by hard constraints!
extend instruction {

keep soft op_code == select {
40: [ADD, ADDI, SUB, SUBI];
20: [XOR, XORI];
10: [JMP, CALL, RET, NOP];

};
};

§ In practice, getting the weights/bias right (for coverage closure)
requires significant engineering skill.

Does not
need to add
up to 100!

46

We have now covered

§ Basics of the “e” verification language and
some features of SN.
– If you take this unit with coursework, you should be

registered for the Specman Fundamentals for Block-
Level Environment Developers online training course,
which introduces you to SN and e in more detail and
provides you with exercises.

§ In Part 2 we will explore more advanced
features of the e language and also how SN
synchronizes with the simulator.

